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EXECUTIVE SUMMARY 

Quantifying pavement damage is crucial for roadway agencies aiming to develop effective 
maintenance and rehabilitation strategies, ultimately extending the service life of roadways. The 
objective of this study was to propose an innovative framework to assess pavement rutting caused by 
truck platoons. To achieve the set objective, the scope of the study included the development of (i) a 
simulation framework for repetitive loading to predict pavement rutting using mechanistic models, 
and (ii) an artificial intelligence (AI) model to utilize an extensive 3D finite element (FE) pavement-
response database for predicting pavement responses under cyclic loading. 

To model the permanent deformation of asphalt concrete (AC), a generalized nonlinear Burger’s 
model was implemented. This model was integrated into an existing robust 3D FE pavement 
framework to predict AC rutting. A nonlinear power-law dashpot was employed to effectively 
characterize the deformation behavior. The model was numerically formulated using an incremental 
approach, allowing for the determination of material responses under various loading and boundary 
conditions. The Burger’s model was successfully implemented in the commercial FE software ABAQUS 
and successfully validated with analytical solutions for a simple creep-loading scenario. The model 
parameters were derived from the results of repeated-load permanent deformation (RLPD) and 
dynamic modulus tests.  

Moreover, to implement cyclic loading that induces accumulative permanent deformation, a load-
pass approach (LPA) was developed in the pavement FE model. In lieu of the conventional moving-
load approach that requires an extensive wheel path length, which has domain implications in the 
other two orthogonal directions, the LPA allows for cyclic loading/multi-axle passes without 
necessitating an infeasible model length and run time. The LPA implements a partial entrance, 
moving load of a full contact-imprint, partial exit, and full rest period. This novel approach emulates a 
viewing window as a truck-tire load passes, accounting for a transient moving load and a reduction of 
the geometric domain of the model, without adversely affecting accuracy. The rest period could be 
initiated after the load “leaves” the point of interest, which is held at mid-length of the model. Given 
the reduced wheel path length, no additional load steps are appended to account for the residual rest 
period. After the total rest period is completed, the next axle load is immediately introduced via 
partial entrance until the number of desired cycles is achieved. This process was applied, and a total 
of 24 cases were executed using the LPA with the Burger’s model. An additional 12 cases, utilizing a 
conventional linear viscoelastic model, were conducted for comparison purposes. The rut-distribution 
trend was similar for all the cases irrespective of the inputs, illustrating the importance of the wheel 
path location. The results demonstrated that the proposed framework (i.e., integration of the 
Burger’s model and the LPA) effectively captured rutting progression. 

Last, a graph neural network (GNN) was established to extend the prediction power of the 
framework, while strategically limiting the FE numerical matrix. A GNN framework is proposed to 
model 3D AC-pavement responses. The FE model data was transformed into a graph structure, where 
the nodes and connections from the FE model were converted into corresponding graph nodes and 
edges. Node features encompassed node coordinates, pavement-layer type, temperature, material 
properties, 3D loading profiles, loading time, and previous pavement responses (displacement, stress, 
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and strain). Edge features utilized relative distance and relative pavement responses, while output 
features represented target pavement responses. The GNN-based pavement simulator (GPS) was 
developed to model 3D pavement responses, including three main components: encoder, processor, 
and decoder. The GPS model utilized two-layer multilayer perceptrons (MLP) for the encoder and 
decoder, while employing the graph network (GN) technology for the processor phase. The model 
was verified via two distinct case studies—OneStep and Rollout schemes—by comparing to FE model 
data as ground truth, with the latter closely approximating FE simulation conditions. Performance 
analyses revealed satisfactory accuracy between both scenarios; however, the Rollout case 
demonstrated higher errors, as compared to the OneStep case. The results indicated the GPS model 
offered an accurate, computationally efficient alternative to minimize the need for an extensive 3D 
pavement FE simulation matrix. 
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CHAPTER 1: INTRODUCTION 

BACKGROUND 

Platoon configuration could be defined using three parameters, namely, lateral position of trucks, 
spacing, and number of trucks. The primary factors that might influence the development of rut-
depth and fatigue-distress accumulation include the reduced interval between truck passes and the 
absence of lateral movement between these trucks (Gungor and Al-Qadi 2022). Quantifying 
pavement damage due to platoons is of key interest to roadway agencies for developing maintenance 
and rehabilitation strategies and achieving pavement designed service life. Hence, a framework that 
could compute pavement distresses as a function of those parameters is essential. Okte and Al-Qadi 
(2022a) introduced a framework, known as the Expected Response Framework, to determine 
distress; it considered effect of wander and platoon-penetration level.  

The framework was further modified to incorporate rest period (truck spacing) into pavement-
distress calculations (Ramakrishnan et al. 2021). The effect of the rest period was incorporated using 
experimental results (Alrajhi et al. 2022), where repeated-load, permanent-deformation tests for 
various asphalt concrete (AC) parameters were considered. The experimental program included 
various binders, temperatures, loading levels, and rest periods. The permanent deformation was 
consistently observed to be greater with an increased rest period, irrespective of other testing 
parameters. Hence, special attention was needed to investigate counterintuitive results of the 
permanent-deformation tests.  

In the framework, responses from the 3D finite element (FE) pavement model, coupled with AASHTO 
Mechanistic–Empirical Pavement Design Guide (MEPDG) transfer functions, were used to compute 
the distresses. However, transfer functions were deemed to be unreliable for two main reasons: 
variability associated with calibration factors (empirical) and lack of physical significance. Despite high 
accuracy of 3D FE pavement models, they are often computationally intensive, thus highlighting a 
need for a framework to compute pavement distresses accurately and efficiently in lieu of transfer 
functions. 

Additionally, despite the 3D pavement model’s robustness, the higher computational requirement 
and longer time make it impractical for road agencies to use the model for pavement design. 
Therefore, with recent advancements in artificial intelligence (AI), a solution for predicting pavement 
responses instantly is possible. Machine learning (ML) is an AI field devoted to comprehending and 
developing “learning” methods or methods that use data to enhance performance on a certain set of 
tasks (Mitchell 1997). Significant work has been performed on applying AI methods, especially ML, in 
civil engineering, including material-property prediction (Liu et al. 2020, 2021), material mix-design 
optimization (Liu et al. 2022b; Rivera-Pérez and Al-Qadi 2024), structural-strength prediction 
(Taghipour Anvari et al. 2023; Zhou et al. 2017), infrastructure-response modeling (Liu et al. 2023; 
Okte and Al-Qadi 2022b; Ye et al. 2022), infrastructure-damage detection (Liu et al. 2022a, 2024b, 
2024a), seismic-damage assessment (Zhai et al. 2024), infrastructure-condition assessment 
(Majidifard et al. 2020; Zhu et al. 2021), structural-design optimization (Zhao et al. 2023b, 2023a), 
and construction-site management (Angah and Chen 2020; Chen et al. 2020).  



 

2 

Given the reported accuracy and efficiency, ML applications have increased in civil engineering, 
especially to predict infrastructure responses. For example, Ye et al. (2022) developed an FE based 
ML framework to predict structural fire responses, which combined the accuracy of FE methods and 
the efficiency of ML techniques to achieve real-time infrastructure-response prediction. Okte and Al-
Qadi (2022b) applied artificial neural networks (ANN) to predict critical pavement responses based on 
a database of 850 3D pavement FE cases. The researchers used the Monte Carlo dropout approach to 
quantify model uncertainty. Similarly, Liu et al. (2023) and Zhou and Al-Qadi (2024) proposed a 
physics-informed long short-term memory (LSTM) network for structural-response modeling by 
incorporating physics constraints into LSTM models. They built an FE database for seismic responses 
to train models. The applications of ML in civil engineering suggest its high potential for predicting 3D 
pavement responses.  

RESEARCH OBJECTIVE AND SCOPE 

The objective of this study was to propose an innovative framework to assess pavement rutting 
induced by truck platoons. To achieve the set objective, the scope of the study included the 
following: (i) develop a simulation framework for repetitive loading to predict pavement responses, 
including rutting, utilizing mechanistic models; and (ii) develop a graph neural network to utilize an 
extensive 3D finite element (FE) pavement-response database for predicting pavement responses. 
The scope is further explained as follows: 

i. Numerical simulation of repetitive loading on flexible pavement under truck platoons. This 
task comprised two subtasks: development of a mechanistic pavement-damage model to 
predict rut depth and implementation of the load-pass approach to invoke repetitive 
loading. This framework allowed simulation of repetitive loading and predict accumulating 
pavement responses, including rutting, using a mechanistic model.  

ii. Graph neural network (GNN) development for predicting pavement responses. An 
expansive 3D pavement FE response database was generated utilizing the established 3D 
pavement FE model. The proposed GNN enabled rapid prediction of pavement responses, 
using the extensive 3D pavement FE response database, while strategically limiting the 
necessary FE simulations. 
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CHAPTER 2: PERMANENT-DEFORMATION MODEL 

INTRODUCTION 

Flexible-pavement permanent deformation, also known as rutting, is a serious distress in AC 
pavements. Rutting contributes to road roughness, risk of hydroplaning, and hazardous driving 
conditions. Rutting could result from external loads, tire pressure, the intrinsic behavior of the AC 
materials and supporting layers, and environmental influences. Rutting in flexible pavement is 
typically due to viscoplastic-strain accumulation in AC, which is caused by material densification and 
shear flow under higher temperatures and loads (Huang 2004; Mallick and El-Korchi 2022); 
settlements or compaction in the unbound granular layer (Ahmed and Erlingsson 2013; Deacon et al. 
2002); and abrasion from studded tires (Lundberg et al. 2021). As presented in Figure 1 (Alamnie et 
al. 2022), the progression of permanent deformation in AC could be divided into three stages: 
densification (where deformation increased at a decreasing rate), strain hardening (where 
deformation increased at a steady rate), and flow (where deformation increased at an accelerating 
rate) (Zhou et al. 2004; Zhou and Scullion 2002). Traditionally, this behavior has been assessed 
through a triaxial creep-recovery test. 

 

Figure 1. Illustration. Three stages of AC permanent deformation. 

Source: Alamnie et al., 2022 

When strains in AC are below 100 to 125μϵ, the material behavior is deemed to be within the linear 
viscoelastic range without inducing any permanent deformation (Airey et al. 2003b; a). However, 
when AC has been subjected to loading and unloading, the resulting strain would consist of four 
components: elastic, plastic, viscoelastic, and viscoplastic. Elastic strain accounts for the fully 
recovered portion as soon as the load has been removed. Plastic strain, which occurs immediately 
upon load application, is permanent and cannot be recovered. In contrast, viscoelastic strain is 
recoverable, while viscoplastic strain is not, with both being time-dependent. Permanent strain, such 
as normalized rutting, is the cumulative effect of plastic, viscoelastic, and viscoplastic strains. 
Therefore, permanent strain includes two time-dependent components that are influenced by the 
loading duration and the rest period (Figure 2). 
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Figure 2. Illustration. Conventional creep-recovery strain components. 

Source: Alamnie et al., 2022 

Permanent deformation of AC could be modeled in various ways. Typically, analytical models have 
been employed for pavement design, either as mechanistic–empirical or empirical models, and 
calibrated using laboratory experiments and/or field-test data. The most widely used model is the 
rutting-transfer equation from AASHTOWare Mechanistic–Empirical Pavement Design (MEPD), which 
has only accounted for the primary (that occurred in unbound materials) and secondary (that 
occurred in AC) stages of rutting (i.e., considered volumetric changes only). To calculate AC rutting, 
the pavement layers were divided into sublayers; and vertical compressive strain was measured at 
the mid-depth of each sublayer. The main limitation of this analytical model has been the reliance on 
regression equations, calibrated with experimental or field data. Hence, its application is valid only 
within the scope of the data.  

Use of mechanical analogs has been another method for modeling AC behavior. For example, linear 
viscoelastic behavior has been described via mechanical analogs using springs and dashpots, which 
represent elastic and viscous behaviors, respectively. Analog models have been also extensively used 
to characterize large deformations in polymers (Khan et al. 2006). The Prony series (a generalized 
Maxwell model in parallel with a spring) has been primarily used to characterize the linear viscoelastic 
behavior of AC. Various combinations of springs, dashpots, sliders (slip devices), and parabolic 
elements have been used to model the viscoelastic behavior of the material (Benedetto et al. 2007; 
Collop et al. 2003; Grzesikiewicz et al. 2013; Olard and Di Benedetto 2003; Zbiciak 2013). The 
advantage of analog models lies in their ability to visualize stresses and strains within the elements. 
Based on the arrangement of the model, a constitutive model could be derived analytically (through 
governing differential equations), making numerical implementation easier and thus providing an 
efficient method for material characterization. 

In the literature, modified versions of the conventional Burger’s model (a combination of the Maxwell 
and Kelvin–Voigt [KV] models in series) have been used frequently to simulate the viscoelastic–
viscoplastic behavior of AC (Collop et al. 2003; Grzesikiewicz et al. 2013; Zbiciak 2013). Constitutive 
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relations for these models have been established and implemented numerically. Based on analog 
models, viscoelastic integrals could be defined for mechanisms such as permanent deformation and 
hardening–relaxation (Cao and Kim 2016; Subramanian et al. 2013). However, the complexity of 
current models in terms of numerical implementation and the need for extensive experimental data 
to obtain material parameters present significant challenges for real-life application. Therefore, this 
study proposes a new viscoelastic fluid model to characterize AC permanent-deformation behavior. 

Detailed derivation and implementation of the nonlinear Burger’s model is presented in the following 
section. The model enables characterization of AC rutting, with the model input parameters obtained 
from experimental results. It is worth noting that the model’s prediction and scope were limited up to 
the secondary stage of permanent deformation. The following steps were followed:  

• Permanent deformation was modeled using a nonlinear dashpot. The model was derived 
numerically and implemented in the commercial FE software ABAQUS. 

• An analytical solution for a simple loading case was used to verify the Burger’s model. 

• Dynamic modulus and flow-number test results were utilized to obtain model parameters. 

• A subset of experimental results was used to constitute the model parameters, which were 
then validated by predicting other scenarios from the tests (differing from the training 
subset). 

GENERALIZED BURGER’S MODEL 

The generalized Burger’s model (GBM) comprised a spring, a dashpot, and several KV elements 
(spring and dashpot connected in parallel) connected in series, as presented in Figure 3.  

 

Figure 3. Illustration. Generalized Burger’s model. 

In the GBM model, the stiffness of a spring element (𝐸0), KV elements (𝐸𝑖 , 𝜂𝑖 𝑖 = 1,2, . . 𝑁), and 
viscosity of a dashpot element (𝜂0) simulated the elastic, viscoelastic, and permanent-deformation 
behavior of AC, respectively. For a given applied stress, the total strain in the model was the 
summation of individual strains of the elements in the model, where stress remained constant across 
each element. Mathematically, the total strain could be formulated as presented in Figure 4. 

E0

E1 EN

η0

ηNη1
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Figure 4. Equation. Total strain is the summation of elastic, viscoelastic, and plastic strain. 

where 𝜖(𝑡) is total strain in the GBM model, 𝜖𝑒(𝑡) is elastic strain in the spring element, 𝜖𝑣𝑒
𝑖 (𝑡) is 

viscoelastic strain in the 𝑖𝑡ℎ KV element, and 𝜖𝑝(𝑡) is irrecoverable strain in the dashpot element. 

Elastic Strain 

The spring element represented Hooke’s law (i.e., stress is proportional to strain and the 
proportionality constant is the modulus). Mathematically, it could be expressed as presented in 
Figure 5. 

 

Figure 5. Equation. Constitutive equation of simple spring element. 

Viscoelastic Strain 

Linear viscoelastic behavior was represented via KV elements. Material parameters such as creep 
compliance and relaxation moduli have been commonly used to characterize this behavior. Creep 
compliance refers to the strain in the model under a constant unit stress, and the relaxation modulus 
refers to the stress in the model under a constant unit strain. In series models (i.e., model with 
elements connected in series) like the GBM, creep compliance is easily determined because strains 
are additive. In contrast, in parallel models like the generalized Maxwell model, the relaxation 
modulus is easily determined because stresses are additive. The creep compliance of KV elements is 
presented in Figure 6. 

 

Figure 6. Equation. Creep compliance for Kelvin-Voight elements. 

where 𝐷(𝑡) is creep compliance, and 𝜏𝑖 =
𝜂𝑖

𝐸𝑖
 is retardation time of 𝑖𝑡ℎ KV element. 

For a linear viscoelastic material, if creep compliance is known, then the relaxation modulus could be 
obtained easily, and vice versa, using the following relationship presented in Figure 7. 

 

Figure 7. Equation. Relationship between creep compliance and relaxation modulus. 

where 𝑅(𝑡) is relaxation modulus.  

𝜖(𝑡) =  𝜖𝑒(𝑡) +  𝜖𝑣𝑒
𝑖 (𝑡)

𝑁

𝑖=1

+  𝜖𝑝(𝑡) 

𝜎(𝑡) = 𝐸0𝜖𝑒(𝑡) 

𝐷(𝑡) =   
1

𝐸𝑖
 1 − 𝑒

−
𝑡
𝜏𝑖 

𝑁

𝑖=1

  

𝑡 =  𝐷(𝑡 − 𝜏)𝑅(𝜏)𝑑𝜏
𝑡

−0
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Park and Kim (1999) numerically implemented Figure 7 to obtain the relaxation modulus from creep 
compliance, and vice versa. If material parameters of the relaxation modulus were known, then 
creep-compliance coefficients could be obtained by solving the equation in Figure 7 (Park and 
Schapery 1999). For linear viscoelastic material, stresses and strains have been related using either 
creep compliance or relaxation modulus, as formulated in Figure 8 and Figure 9, respectively. 

 

Figure 8. Equation. Constitutive relation of linear viscoelastic material using creep compliance. 

 

Figure 9. Equation. Constitutive relation of linear viscoelastic material using relaxation modulus. 

Permanent Strain 

For the dashpot element, the stresses are proportional to the strain rate and correlated through the 
viscosity of dashpot (𝜂0) (Figure 10). 

 

Figure 10. Equation. Constitutive relation for a dashpot. 

Figure 10 can also be written as presented in Figure 11. 

 

Figure 11. Equation. Plastic strain is a function of stress and viscosity of the dashpot. 

The strain in the dashpot is irrecoverable, resulting in permanent deformation. The viscosity of the 
dashpot can be expressed as a function of time, stress, and temperature; or it can be considered a 
constant. If the viscosity is constant, then permanent strain will be linear, as a function of time for 
creep loading.  

If 𝜂(𝜏) =  𝜂0 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) and 𝜎(𝜏) = 𝜎0, then Figure 11 can be solved as presented in Figure 12. 

 

Figure 12. Equation. Integral function solved for plastic strain. 

However, AC permanent deformation under creep loading is nonlinear (Figure 1). Hence, a dashpot of 
constant viscosity is inadequate to capture such behavior. Several studies have used a nonlinear 

𝜖𝑣𝑒(𝑡) =  𝐷(𝑡 − 𝜏)𝜎 (𝜏)𝑑𝜏
𝑡

−0

 

𝜎(𝑡) =  𝑅(𝑡 − 𝜏)𝜖𝑣𝑒 (𝜏)𝑑𝜏
𝑡

−0

 

𝜎(𝑡) = 𝜂0𝜖𝑝 (𝑡) 

𝜖𝑝(𝑡) =   
𝜎(𝜏)

𝜂(𝜏)
𝑑𝜏

𝑡

−0

 

𝜖𝑝(𝑡) =  
𝜎0

𝜂0
𝑑𝜏 =

𝜎0𝑡

𝜂0

𝑡

−0
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dashpot to capture the permanent deformation behavior of AC and polymers (Khan et al. 2006; 
Kucuk et al. 2013; Liang and Guan 2022; Pei et al. 2016; Zhang et al. 2016). In this study, the viscosity 
of the dashpot was characterized as follows (Figure 13): 

 

Figure 13. Equation. Nonlinear dashpot. 

where 𝑎, 𝑏 are material constants, and 𝑡 is the time. The permanent deformation for creep loading is 
calculated via Figure 14.  

 

Figure 14. Equation. Permanent deformation for creep loading. 

If 𝑏 < 1, then permanent deformation would be similar to the actual behavior of AC. 

NUMERICAL IMPLEMENTATION 

The incremental formulation of the model was derived to obtain strains for any arbitrary loading. This 
formulation computed the change in strains for a small load increment. The formulation was 
particularly useful for writing the user material subroutine (UMAT) in ABAQUS (i.e., custom material 
constitutive relation), where it was used to characterize rutting in the AC. The incremental strain in 
the model at (𝑛 + 1)𝑡ℎ increment is presented in Figure 15. 

 

Figure 15. Equation. Incremental total strain is the summation of incremental elastic, viscoelastic, 
and plastic strains. 

where Δ𝜖(𝑡𝑛+1) = 𝜖(𝑡𝑛+1) − 𝜖(𝑡𝑛), and 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡, Δ𝑡 is the time increment. 

Spring Element (Elastic Strain) 

Incremental strain in the spring element could be derived as presented in Figure 16. 

 

Figure 16. Equation. Incremental stress is related to incremental elastic strain for a simple spring. 

Figure 16 could be rearranged as presented in Figure 17. 

  

𝜂0(𝑡) = 𝑎𝑡𝑏  

𝜖𝑝(𝑡) =   
𝜎0

𝑎𝑡𝑏
𝑑𝜏 =

𝜎0𝑡
1−𝑏

𝑎(1 − 𝑏)

𝑡

−0

 

Δ𝜖(𝑡𝑛+1) =  Δ𝜖𝑒(𝑡𝑛+1) +  Δ𝜖𝑣𝑒
𝑖 (𝑡𝑛+1)

𝑁

𝑖=1

+ Δ𝜖𝑝(𝑡𝑛+1) 

Δ𝜎(𝑡𝑛+1) = 𝐸0Δ𝜖𝑒(𝑡𝑛+1) 
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Figure 17. Equation. Rearranged form of Figure 16. 

KV Elements (Viscoelastic Strain) 

The viscoelastic strains are presented in Figure 18. 

 

Figure 18. Equation. Viscoelastic strain at (𝒏 + 𝟏)𝒕𝒉 time step. 

The above integral could be separated as presented in Figure 19. 

 

Figure 19. Equation. Separation of Figure 18. 

The first part of the Figure 19 could be solved as presented in Figure 20. 

 

Figure 20. Equation. Solved first part of Figure 19. 

The second part of Figure 19 (𝜃𝑖(𝑡𝑛+1)) could be further split, as presented in Figure 21. 

 

Figure 21. Equation. Second part of Figure 19. 

In Figure 21, the first part 𝑡𝑛+1 could be substituted as 𝑡𝑛 + Δ𝑡; and the equation becomes Figure 22. 

 

Figure 22. Equation. 𝒕𝒏+𝟏 was substituted as 𝒕𝒏 + 𝚫𝒕 in Figure 21. 

where 

Δϵe(𝑡𝑛+1) = 𝜖𝑒(𝑡𝑛+1) − 𝜖𝑒(𝑡𝑛) =
Δ𝜎

𝐸0
 

𝜖𝑣𝑒(𝑡𝑛+1) =    
1

𝐸𝑖
 1 − 𝑒

−
(𝑡𝑛+1−𝜏)

𝜏𝑖  

𝑁

𝑖=1

 𝜎 (𝜏)𝑑𝜏
𝑡𝑛+1

−0

 

𝜖𝑣𝑒(𝑡𝑛+1) =    
1

𝐸𝑖

𝑁

𝑖=1

 𝜎 (𝜏)𝑑𝜏 −   
𝑒
−

(𝑡𝑛+1−𝜏)
𝜏𝑖

𝐸𝑖

𝑁

𝑖=1

 𝜎 (𝜏)𝑑𝜏
𝑡𝑛+1

−0

𝑡𝑛+1

−0

 

   
1

𝐸𝑖

𝑁

𝑖=1

 𝜎 (𝜏)𝑑𝜏 =   
1

𝐸𝑖

𝑁

𝑖=1

 𝜎(𝑡𝑛+1)
𝑡𝑛+1

−0

 

𝜃𝑖(𝑡𝑛+1) =  
𝑒
−

(𝑡𝑛+1−𝜏)
𝜏𝑖

𝐸𝑖
𝜎 (𝜏)𝑑𝜏

𝑡𝑛+1

−0

=   
𝑒
−

(𝑡𝑛+1−𝜏)
𝜏𝑖

𝐸𝑖
𝜎 (𝜏)𝑑𝜏

𝑡𝑛

−0

+   
𝑒
−

(𝑡𝑛+1−𝜏)
𝜏𝑖

𝐸𝑖
𝜎 (𝜏)𝑑𝜏

𝑡𝑛+1

𝑡𝑛

 

 
𝑒
−

(𝑡𝑛+1−𝜏)
𝜏𝑖

𝐸𝑖
𝜎 (𝜏)𝑑𝜏 =  

𝑒
−
(𝑡𝑛+Δ𝑡−𝜏)

𝜏𝑖

𝐸𝑖
𝜎 (𝜏)𝑑𝜏

𝑡𝑛

−0

𝑡𝑛

−0

= 𝜃𝑖(𝑡𝑛)𝑒
−
Δ𝑡
𝜏𝑖  
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Figure 23. Equation. 𝜽𝒊(𝒕𝒏) 

In the second part of the Figure 21, the stress derivative could be approximated as 𝜎 (𝜏) =
Δ𝜎

Δ𝜏
=

𝜎(𝑡𝑛+1)−𝜎(𝑡𝑛)

𝑡𝑛+1−𝑡𝑛
. It is noteworthy that the provided approximation is valid for small time increments, 

when the stress in the time interval is linear. The equation could be rewritten as presented in Figure 
24. 

 

Figure 24. Equation. Approximate form of the second part of Figure 21. 

Figure 24 could be solved directly, as presented in Figure 25. 

 

Figure 25. Equation. Solved equation (Figure 24). 

Therefore, Figure 21 becomes Figure 26. 

 

Figure 26. Equation. 𝜽𝒊(𝒕𝒏+𝟏). 

At every time increment, 𝜃𝑖(𝑡𝑛) needs to be stored to obtain 𝜃𝑖(𝑡𝑛+1). The incremental viscoelastic 
strain is presented in Figure 27. 

 

Figure 27. Equation. Incremental viscoelastic strain (𝚫𝝐𝒗𝒆(𝒕𝒏+𝟏)). 

Dashpot Element (Permanent Strain) 

Similar to the treatment of Figure 21, Figure 11 could be written as presented in Figure 28. 

  

𝜃𝑖(𝑡𝑛) =  
𝑒
−
(𝑡𝑛−𝜏)

𝜏𝑖

𝐸𝑖
𝜎 (𝜏)𝑑𝜏

𝑡𝑛

−0

 

 
𝑒
−

(𝑡𝑛+1−𝜏)
𝜏𝑖

𝐸𝑖
𝜎 (𝜏)𝑑𝜏

𝑡𝑛+1

𝑡𝑛

=  
𝑒
−
(𝑡𝑛+1−𝜏)

𝜏𝑖

𝐸𝑖
 
Δ𝜎

Δ𝜏
 𝑑𝜏

𝑡𝑛+1

𝑡𝑛

 

 
𝑒
−

(𝑡𝑛+1−𝜏)
𝜏𝑖

𝐸𝑖
𝜎 (𝜏)𝑑𝜏

𝑡𝑛+1

𝑡𝑛

=
Δ𝜎

Δ𝜏

𝜏𝑖
𝐸𝑖
 1 − 𝑒

−
Δ𝑡
𝜏𝑖    

𝜃𝑖(𝑡𝑛+1) = 𝜃𝑖(𝑡𝑛)𝑒
−
Δ𝑡
𝜏𝑖 +

Δ𝜎

Δ𝜏

𝜏𝑖
𝐸𝑖
 1 − 𝑒

−
Δ𝑡
𝜏𝑖     

Δ𝜖𝑣𝑒(𝑡𝑛+1) =   
Δ𝜎

𝐸𝑖
 1 −

𝜏𝑖
Δ𝜏

 1 − 𝑒
−
Δ𝑡
𝜏𝑖   + 𝜃𝑖(𝑡𝑛)  1 − 𝑒

−
Δ𝑡
𝜏𝑖   

𝑁

𝑖=1
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Figure 28. Equation. 𝝐𝒑(𝒕𝒏+𝟏).  

Figure 28 could be simplified as Figure 29.  

 

Figure 29. Equation. Simplified form of Figure 28. 

In Figure 28, the ∫
𝜎(𝜏)

𝜂0(𝜏)
𝑑𝜏

𝑡𝑛+1
𝑡𝑛

 expression could be approximated as shown in Figure 30. 

 

Figure 30. Equation. Approximation of ∫
𝝈(𝝉)

𝜼𝟎(𝝉)
𝒅𝝉

𝒕𝒏+𝟏
𝒕𝒏

. 

This approximation is illustrated in Figure 31. 

 

Figure 31. Illustration. Numerical approximation of an integral for a small interval. 

𝜖𝑝(𝑡𝑛+1) =   
𝜎(𝜏)

𝜂0(𝜏)
𝑑𝜏 =

𝑡𝑛+1

−0

  
𝜎(𝜏)

𝜂0(𝜏)
𝑑𝜏 +  

𝜎(𝜏)

𝜂0(𝜏)
𝑑𝜏

𝑡𝑛+1

𝑡𝑛

𝑡𝑛

−0

 

𝜖𝑝(𝑡𝑛+1) = 𝜖𝑝(𝑡𝑛) +  
𝜎(𝜏)

𝜂0(𝜏)
𝑑𝜏

𝑡𝑛+1

𝑡𝑛

  

 
𝜎(𝜏)

𝜂0(𝜏)
𝑑𝜏 ≈

𝜎  𝑡𝑛 +
Δ𝑡
2
 

𝜂0  𝑡𝑛 +
Δ𝑡
2
 
Δ𝑡 =

 𝜎(𝑡𝑛) +
Δ𝜎
2
 Δ𝑡

𝑎  𝑡𝑛 +
Δ𝑡
2
 
𝑏

𝑡𝑛+1

𝑡𝑛
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Therefore, Δ𝜖𝑝(𝑡𝑛+1) may be written as presented in Figure 32. 

 

Figure 32. Equation. 𝚫𝝐𝒑(𝒕𝒏+𝟏). 

The total increment strain becomes as presented in Figure 33. 

 

Figure 33. Equation. 𝚫𝝐(𝒕𝒏+𝟏). 

The ABAQUS software requires stress increments and the Jacobian to perform equilibrium iterations. 
Rearranging Figure 33 in terms of Δ𝜎 gives Figure 34. 

 

Figure 34. Equation. 𝚫𝝈. 

Mathematically, the Jacobian could be defined as the slope of stress increment over strain increment. 
Intuitively, it represents the change in stress state for a small change in strain increments. 

 

Figure 35. Equation. Jacobian. 

Figure 35 could be differentiated with respect to the strain (Figure 36). 

 

Figure 36. Equation. Jacobian of the Burger’s model. 

Δ𝜖𝑝(𝑡𝑛+1) =  
 𝜎(𝑡𝑛) +

Δ𝜎
2
 Δ𝑡

𝑎  𝑡𝑛 +
Δ𝑡
2
 
𝑏   

Δ𝜖(𝑡𝑛+1) =  
Δ𝜎

𝐸0
+   

Δ𝜎

𝐸𝑖
 1 −

𝜏𝑖
Δ𝜏

 1 − 𝑒
−
Δ𝑡
𝜏𝑖   +  𝜃𝑖(𝑡𝑛)  1 − 𝑒

−
Δ𝑡
𝜏𝑖   

𝑁

𝑖=1

+  
 𝜎(𝑡𝑛) +

Δ𝜎
2
 Δ𝑡

𝑎  𝑡𝑛 +
Δ𝑡
2
 
𝑏  

Δ𝜎 =

 Δ𝜖 −  𝜃𝑖(𝑡𝑛)  1 − 𝑒
−
Δ𝑡
𝜏𝑖  −

𝜎(𝑡𝑛)Δ𝑡

𝑎  𝑡𝑛 +
Δ𝑡
2
 
𝑏

𝑁
𝑖=1  

 
1
𝐸0

+  
1
𝐸𝑖
 1 −

𝜏𝑖
Δ𝜏

 1 − 𝑒
−
Δ𝑡
𝜏𝑖   +

Δ𝑡

2𝑎  𝑡𝑛 +
Δ𝑡
2
 
𝑏  𝑁

𝑖=1  

  

𝐽 =
𝜕Δ𝜎

𝜕Δ𝜖
  

𝐽 =  
1

 
1
𝐸0

+  
1
𝐸𝑖
 1 −

𝜏𝑖
Δ𝜏

 1 − 𝑒
−
Δ𝑡
𝜏𝑖   +

Δ𝑡

2𝑎  𝑡𝑛 +
Δ𝑡
2
 
𝑏  𝑁

𝑖=1  
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3D Formulation 

Following the previous derivations, it is worth noting that the formulation shown in the previous 
section is only applicable for unidimensional problems (1D). Hence, a 3D formulation is required for 
appropriately modeling real-life complexities in pavements. For homogenous linear isotropic elastic 
material, Figure 5 could be reformulated in 3D as follows (Figure 37, Figure 38, Figure 39, and Figure 
40). 

 

Figure 37. Equation. 3D constitutive relation for homogeneous linear isotropic elastic material. 

where 

 

Figure 38. Equation.[ℂ𝒆]. 

 

Figure 39. Equation. Stress tensor in Voigt notation. 

 

Figure 40. Equation. Strain tensor in Voigt notation. 

where 𝜈 is Poisson’s Ratio. Figure 37 can be rewritten as presented in Figure 41 along with Figure 42.  

 

Figure 41. Equation. {𝝐𝒆(𝒕)} 

where 

 

Figure 42. Equation. [ℝ𝒆]. 

{𝜎(𝑡)} = [ℂ𝑒]{𝜖𝑒(𝑡)} 

[ℂ𝑒] =
𝐸0

(1 + 𝜈)(1 − 2𝜈)

 
 
 
 
 
 
 
 
 
1 − 𝜈 𝜈 𝜈 0 0 0
𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0

0 0 0
1 − 2𝜈

2
0 0

0 0 0 0
1 − 2𝜈

2
0

0 0 0 0 0
1 − 2𝜈

2  
 
 
 
 
 
 
 
 

 

{𝜎} = {𝜎11 ,𝜎22 ,𝜎33,𝜎12 ,𝜎13,𝜎23} 

{𝜖} = {𝜖11, 𝜖22, 𝜖33, 2𝜖12, 2𝜖13, 2𝜖23} 

{𝜖𝑒(𝑡)} = [ℂ𝑒]
−1{𝜎(𝑡)} = [ℝ𝑒]{𝜎(𝑡)} 

[ℝ𝑒] =
1

𝐸0

 
 
 
 
 
 

1 −𝜈 −𝜈 0 0 0
−𝜈 1 −𝜈 0 0 0
−𝜈 −𝜈 1 0 0 0
0 0 0 2(1 + 𝜈) 0 0
0 0 0 0 2(1 + 𝜈) 0
0 0 0 0 0 2(1 + 𝜈) 
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For viscoelastic and dashpot elements, matrices [ℂ], and [ℝ] would be the same, except 𝐸0 would be 
substituted with 𝐸𝑖, and 𝜂0, respectively. Hence, Figure 34 and Figure 36 would become Figure 43 and 
Figure 44 along with Figure 45, respectively. 

 

Figure 43. Equation. {𝚫𝝈}. 

 

Figure 44. Equation. [𝑱]. 

where 

 

Figure 45. Equation. [ℂ]. 

Viscoelastic strain (Δ𝜖𝑣𝑒(𝑡𝑛+1)) update (Figure 27) would become Figure 46 along with Figure 47. 

 

Figure 46. Equation. {𝚫𝝐𝒗𝒆(𝒕𝒏+𝟏)}. 

where, 

 

Figure 47. Equation. [ℝ]. 

Finally, Figure 43, Figure 44, and Figure 46 could be implemented within the ABAQUS UMAT 
subroutine to characterize the permanent deformation of AC. 

{Δ𝜎} =

 [ℂ]{Δ𝜖} −  [ℂ]{𝜃𝑖(𝑡𝑛)} 1 − 𝑒
−
Δ𝑡
𝜏𝑖  −

{𝜎(𝑡𝑛)}Δ𝑡

𝑎  𝑡𝑛 +
Δ𝑡
2
 
𝑏

𝑁
𝑖=1  

 
1
𝐸0

+  
1
𝐸𝑖
 1 −

𝜏𝑖
Δ𝜏

 1 − 𝑒
−
Δ𝑡
𝜏𝑖   +

Δ𝑡

2𝑎  𝑡𝑛 +
Δ𝑡
2
 
𝑏  𝑁

𝑖=1  

 

[𝐽] =  
[ℂ]

 
1
𝐸0

+  
1
𝐸𝑖
 1 −

𝜏𝑖
Δ𝜏

 1 − 𝑒
−
Δ𝑡
𝜏𝑖   +

Δ𝑡

2𝑎  𝑡𝑛 +
Δ𝑡
2
 
𝑏  𝑁

𝑖=1  

 

[ℂ] =
[ℂ𝑒]

𝐸0
 

{Δ𝜖𝑣𝑒(𝑡𝑛+1)} =   
[ℝ]{Δ𝜎}

𝐸𝑖
 1 −

𝜏𝑖
Δ𝜏

 1 − 𝑒
−
Δ𝑡
𝜏𝑖   + {𝜃𝑖(𝑡𝑛)}  1 − 𝑒

−
Δ𝑡
𝜏𝑖   

𝑁

𝑖=1

 

[ℝ] = 𝐸0[ℝ𝑒] 
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MODEL VERIFICATION 

Any models, especially newly formulated ones, must undergo proper verification and validation, to 
ensure that the formulation has been implemented correctly in a code or subroutine. In numerical 
simulations, verification involves checking the implementation for errors by comparing it with an 
analytical solution of a well-established conceptual problem. For this case, the conceptual problem 
involved computing the strain of the model subjected to uniaxial constant pulse loading (Figure 48). 

 

Figure 48. Equation. 𝝈(𝒕) for creep loading. 

Figure 5, Figure 8, and Figure 11 could be solved to compute elastic, viscoelastic, and permanent 
strains, respectively. The MATLAB integration function was used to solve these equations. For the 
computation, material parameters were chosen randomly, as the goal was to verify the 
implementation. The values of 𝜎0 and 𝑡0 were taken as 0.55 and 5 sec, respectively. The analytical 
solution is presented in Figure 49.  

 

Figure 49. Graph. Analytical solution of model for creep loading. 

To verify, the same problem was modeled in ABAQUS. Eight elements were used to model a cube; 
and boundary conditions were established to induce uniaxial and uniform stress conditions (Figure 
50). All nodes on the bottom face were restrained in the vertical direction (Y-axis). Additionally, node 
1 was restrained in the X- and Z-axes; and node 2 was restrained in the X-axis. The loading applied 
was similar to the stress depicted in Figure 49. 

𝜎(𝑡) =  𝜎0, 0 ≤ 𝑡 ≤ 𝑡0 

= 0, 𝑡 > 𝑡0 
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Figure 50. Illustration. Eight-element cube model in ABAQUS. 

The strains obtained from the ABAQUS model and the analytical solution were exactly same, as 
illustrated in Figure 51. The strains presented in Figure 51 included the total strain (𝜖(𝑡)) and the 
permanent strain (𝜖𝑝(𝑡)). During the load application, permanent strain increased and remained 

constant after the load was removed, while total strain (which is greater than or equal to 𝜖𝑝(𝑡)) 

increased with the load and eventually reached the same value as permanent strain sometime after 
the load application. Moreover, the elastic and viscoelastic strains were fully recovered. 

 

Figure 51. Graph. Analytical solution versus ABAQUS implementation. 
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MODEL-PARAMETER DETERMINATION 

Experimental Program 

Before validating the model, input parameters must be determined. For the dashpot element (𝜂0), 
two parameters (𝑎, 𝑏) were needed to characterize permanent deformation. A common test used to 
characterize AC rutting behavior is the repeated-load permanent-deformation (RLPD) test, also 
known as the flow-number test (AASHTO T378). In the RLPD test, a cylindrical AC specimen was 
subjected to multiple cycles of haversine loading, with a rest period between cycles, either with or 
without confinement. Various truck spacings and speeds could be simulated by adjusting the rest 
period and loading time. RLPD tests were conducted without confinement by Alrajhi et al. (2022) to 
investigate the impact of the rest period on AC permanent-deformation behavior. The tests were 
performed on various AC mixes under different temperatures, loading conditions, and rest period 
levels (Figure 52). The RLPD results from the tests were utilized in this study to characterize the 
material behavior.  

 

Figure 52. Illustration. RLPD test matrix conducted by Alrajhi et al. (2022). 

In a previous project with the researchers, Alrajhi et al. (2022) conducted dynamic modulus tests for 
the AC mixes, presented in Figure 52, to characterize the linear viscoelastic behavior of AC. The tests 
measured material responses (strains) to haversine loading at various frequencies and temperatures. 
The strain responses were then shifted to a reference temperature to generate a master curve. This 
master curve could be fitted with a Prony series to obtain relaxation modulus coefficients. Typically, 
10–15 KV elements were necessary to accurately characterize the material response over a broader 
frequency spectrum. Once the relaxation coefficients were determined, creep-compliance 
coefficients could be calculated using Figure 7 (Park and Schapery 1999). Therefore, the dynamic 
modulus tests could be used to obtain parameters 𝐸𝑖 , 𝜏𝑖 , and 𝐸0 (instantaneous modulus) of the GBM 
model. Figure 53 presents a sample from the experimental data. Note that the tertiary region was 
excluded, after identifying the point where the curvature changed from convex to concave. 
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Figure 53. Graph. Permanent strain versus loading cycles from the RLPD test. 

Parameter-Determination Procedure 

The RLPD test could be simulated in ABAQUS using the same loading conditions (haversine loading 
with a rest period) and boundary conditions (bottom face pinned), as illustrated in Figure 54. To 
determine the material parameters, initial values for 𝑎 and 𝑏 were selected; and the resulting 𝜖𝑝 from 

the ABAQUS model was compared with the experimental data. Based on the comparison, the values 
of 𝑎 and 𝑏 could be adjusted until the model and test results aligned. However, this process was 
labor-intensive and time-consuming, as it required several trials and running thousands of cycles in 
ABAQUS. 

 

Figure 54. Illustration. RLPD test modeled in ABAQUS. 

The test conditions for the dynamic modulus and RLPD were set to achieve a uniaxial stress state in 
the specimen. Therefore, 𝜖𝑝 and 𝜖 obtained from MATLAB's uniaxial (1D) formulation were deemed 

to be similar to ones obtained from ABAQUS for the same values of 𝑎 and 𝑏. This hypothesis was 
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confirmed by running various cases in ABAQUS with different material parameters and comparing the 
results with those from MATLAB (Figure 55). In the tests, strain gauges were placed vertically in the 
center of the specimen. Similarly, in the model, strains were measured from the center region. This 
analysis was highly beneficial because running the 1D formulation in MATLAB took only a few 
seconds (owing to the formulation’s simplicity) and was deemed valid, as the test conditions were 
conducted to emulate a 1D state. Thus, the 1D formulation could be used to determine the material 
parameters. Instead of using a trial-and-error method with the cylindrical model, Figure 11 could be 
fitted (with known 𝜎 and 𝜖𝑝) using a least-square curve-fitting technique to obtain the parameters 𝑎 

and 𝑏. Figure 56 provides an example of applying fitting to experimental data. 

 

A. Permanent strain (𝜖𝑝). 

 

B. Total strain (𝜖). 

Figure 55. Graph. Strain comparison between uniaxial formulation and ABAQUS cylinder model. 
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Figure 56. Graph. Experimental data versus fit using 1D formulation for various rest periods. 

MODEL PARAMETERS 

For the full suite of material parameters, 𝑎 and 𝑏 were obtained for all tests conducted at various 
loading conditions, rest periods, and temperatures, as summarized in Table 1. It is worth noting that 
T, S, and R represent temperature (℉), stress level (psi), and rest period (sec), respectively. 

Table 1. Material Parameters 𝒂 and 𝒃 for AC Mixes in the Experimental Program 

PG64-28SBS PG76-22SBS PG76-22TR+ 

T S R 𝒂 𝒃 T S R 𝒂 𝒃 T S R 𝒂 𝒃 

 
 
 
 
 
82.5 

 
80 

0.18 405.63 0.65  
 
 
 
 
104 

 
80 

0.18 258.51 0.65  
 
 
 
 
104 

 
80 

0.18 244.96 0.63 

0.57 232.87 0.64 0.57 138.23 0.61 0.57 152.52 0.58 

2.5 34.12 0.40 2.5 62.42 0.51 2.5 52.09 0.48 

 
110 

0.18 427.73 0.59  
110 

0.18 241.93 0.62  
110 

0.18 233.39 0.58 

0.57 238.87 0.57 0.57 122.02 0.58 0.57 139.05 0.54 

2.5 86.99 0.46 2.5 53.94 0.43 2.5 54.22 0.40 

 
140 

0.18 490.01 0.53  
140 

0.18 234.87 0.55  
140 

0.18 237.54 0.51 

0.57 230.26 0.53 0.57 127.15 0.52 0.57 134.63 0.48 

2.5 91.30 0.40 2.5 56.11 0.36 2.5 67.10 0.33 

 
 
 
 
 
104 

 
80 

0.18 124.76 0.57  
 
 
 
 
130 

 
80 

0.18 97.33 0.54  
 
 
 
 
130 

 
80 

0.18 94.66 0.49 

0.57 82.45 0.52 0.57 56.66 0.49 0.57 52.89 0.43 

2.5 34.12 0.40 2.5 23.59 0.34 2.5 27.42 0.25 

 
110 

0.18 125.05 0.49  
110 

0.18 85.67 0.42  
110 

0.18 81.57 0.42 

0.57 79.49 0.46 0.57 53.77 0.39 0.57 50.87 0.35 

2.5 33.53 0.29 2.5 24.30 0.17 2.5 25.41 0.15 
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PG64-28SBS PG76-22SBS PG76-22TR+ 

T S R 𝒂 𝒃 T S R 𝒂 𝒃 T S R 𝒂 𝒃 

 
140 

0.18 110.35 0.42  
140 

0.18 76.14 0.34  
140 

0.18 65.41 0.29 

0.57 76.54 0.37 0.57 49.90 0.30 0.57 43.91 0.26 

2.5 35.38 0.21 2.5 25.78 0.09 2.5 24.92 0.09 

Sensitivity of Model Parameters 

A sensitivity analysis was conducted to assess the impact of material parameters on permanent 
deformation, helping to determine the significance of each parameter on deformation. For all cases 
listed in Table 1, the parameter 𝑎 was varied by 10% (0.9𝑎, 1.1𝑎), while keeping 𝑏 constant, and vice 
versa for 𝑏. The root mean square error (RMSE) was calculated between the permanent deformation 
for the bounds and the actual values (𝑎, 𝑏). At lower temperatures (82.5° and 104°F), parameter 𝑏 
was found to be more sensitive than 𝑎 across all mixes. However, at 130°F, 𝑎 became slightly more 
critical than 𝑏 at higher stress levels (110 and 140 psi). 

Figure 57 illustrates the influence of these parameters on deformation in the experimental case. The 
dashed lines represent the actual experimental data; and the shaded area indicates the extent of 
influence due to changes in the parameters, which is also reflected in the RMSE values. In Figure 57, 
the shaded area for changes in 𝑏 was considerably greater than for the changes in 𝑎; and the RMSE 
values for 𝑎 were smaller than those for 𝑏. Figure 58 presents a case where 𝑎 has a greater influence 
than 𝑏. The extent of the parameters’ influence on 𝜖𝑝 depended on the load level, temperature, and 

rest period. Overall, a reduction in 𝑎 and 𝑏 could lead to increased permanent deformation, and vice 
versa. 

 

A. Sensitivity of 𝑎 on 𝜖𝑝. 
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B. Sensitivity of 𝑏 on 𝜖𝑝. 

Figure 57. Graph. Influence of parameters on permanent deformation for PG64-28SBS mix at 104℉ 
and 80 psi. 

 

A. Sensitivity of 𝑎 on 𝜖𝑝. 
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B. Sensitivity of 𝑏 on 𝜖𝑝. 

Figure 58. Graph. Influence of parameters on permanent deformation for PG76-22SBS mix at 130℉ 
and 110 psi. 

Effect of Testing Parameters on Permanent Deformation 

Based on the sensitivity analysis, parameter 𝑎 changed exponentially; and 𝑏 varied linearly with 
varying rest periods. Meanwhile, 𝑎 showed minimal variation with stress-level changes, whereas 𝑏 
decreased linearly as stress levels increase. These trends were consistently observed across all cases. 
However, determining the impact of temperature on material parameters was challenging, given that 
only two temperatures were considered. Parameters 𝑎 and 𝑏 were plotted versus rest periods for a 
PG76-22SBS mix under various temperature and load conditions in Figure 59. 

In Figure 59, the blue and orange curves represent the higher and lower temperatures in the tests, 
respectively. The resulting parameters for the two temperatures were clearly distinct, particularly for 
𝑎. It is logical that changes in load levels should not significantly affect the material's viscosity (𝑎), but 
they could influence the rate of deformation (𝑏). Consequently, unlike 𝑏, parameter 𝑎 remained 
relatively stable across various stress levels, especially at higher rest periods. The variation of both 𝑎 
and 𝑏 with stress level was nearly linear. Moreover, the parameters for 110 psi were almost centered 
between the values at 80 and 140 psi (i.e., coincidental that 110 psi is equidistant from the two stress 
levels); and the variation in 𝑎 was less pronounced than that in 𝑏 across different stress levels. 
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A. 𝑎 

 

B. 𝑏 

Figure 59. Graph. Material parameters (𝒂 and 𝒃) versus rest period for PG76-22SBS mix. 
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MODEL VALIDATION 

Model validation is a process of checking a model’s accuracy in representing real behavior. To 
validate parameters at 80 and 140 psi, 𝜖𝑝 was predicted at 110 psi due to the observed linear 

dependence of material parameters with stress levels (Figure 60 and Figure 61). 

 

Figure 60. Equation. 𝒂𝒑𝒓𝒆𝒅
𝟏𝟏𝟎 . 

 

Figure 61. Equation. 𝒃𝒑𝒓𝒆𝒅
𝟏𝟏𝟎 . 

where 𝑎𝑝𝑟𝑒𝑑
110 , 𝑏𝑝𝑟𝑒𝑑

110  are predicted parameters at 110 psi; and 𝑎𝑎𝑐𝑡
80 , 𝑎𝑎𝑐𝑡

140, 𝑏𝑎𝑐𝑡
80 , 𝑏𝑎𝑐𝑡

140 are actual 

parameters at 80 psi and 140 psi, respectively.  

Predicted parameters were used to obtain 𝜖𝑝𝑝𝑟𝑒𝑑
110  to compare results with the experimental data 

obtained at 110 psi for a PG76-22SBS mix (Figure 62). The predictions agreed with the experimental 
data, and similar predictions were observed for other mixes as well. 

 

A. 104℉. 

𝑎𝑝𝑟𝑒𝑑
110 =

(𝑎𝑎𝑐𝑡
80 + 𝑎𝑎𝑐𝑡

140)

2
   

𝑏𝑝𝑟𝑒𝑑
110 =

(𝑏𝑎𝑐𝑡
80 + 𝑏𝑎𝑐𝑡

140)

2
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B. 130℉. 

Figure 62. Graph. Actual versus predicted for a PG76-22SBS mix at 110 psi. 

SUMMARY 

In this chapter, a generalized nonlinear Burger’s model was introduced to predict AC permanent 
deformation. This model could be integrated into an existing robust 3D FE pavement model to predict 
asphalt concrete (AC) rutting. To characterize this behavior accurately, a nonlinear power-law 
dashpot was utilized. The model was numerically formulated (using an incremental approach) to 
determine the material response for any arbitrary loading and boundary conditions. The 1D 
formulation was extended to a 3D formulation by applying the principles of linear elastic theory. As 

part of the 3D formulation, the stress increment (𝛥𝜎) and Jacobian (
𝜕𝛥𝜎

𝜕𝛥𝜖
) were derived for 

implementation in ABAQUS as a UMAT. The numerical formulation could also be applied to 
implement Burger’s model in any FE analysis software. The model was successfully implemented in 
ABAQUS and verified against an analytical solution (using MATLAB) for a simple creep-loading 
scenario. The model parameters were derived from the results of the repeated-load permanent 
deformation (RLPD) experiment and dynamic modulus tests. Validation was achieved by comparing 
the predicted deformation with actual experimental data. The nonlinear dashpot provided greater 
accuracy in capturing AC permanent-deformation behavior, as compared to the conventional dashpot 
(constant viscosity). 

The dashpot parameters 𝑎 and 𝑏—representing the deformation rate and viscoelastic material 
properties—were accurately and efficiently determined by correlating the uniaxiality of the flow-
number test with the analytical solution. Sensitivity analysis revealed that 𝜖𝑝 was more sensitive to 𝑏 
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than 𝑎, particularly at lower temperatures (82.5° and 104°F). However, at a higher temperature 
(130°F), 𝑎 became slightly more influential than 𝑏. Moreover, parameter 𝑎 was found to be 
exponentially dependent on the rest period and unaffected by stress level; and 𝑏 exhibited a linear 
dependence on both rest period and stress level. The model was successfully validated by 
interpolating material parameters across different stress levels, and a linear relationship was found 
suitable for the considered conditions. In the next chapter, detailed implementation of the 3D 
Burger’s model formulation in a pavement FE model is discussed, along with its combined application 
with the load-pass approach.  
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CHAPTER 3: FE PAVEMENT MODEL 

Conventionally pavements are modeled with simplified assumptions such as linear elastic pavement 
layers, uniform static loading over a circular contact area, and layer interactions using distributed 
springs. In this study, a 3D FE model for pavements was utilized, based on nearly three decades of 
work by Al-Qadi and colleagues to address the aforementioned shortcomings (Al-Qadi et al. 2008; Al-
Qadi and Elseifi 2007; Elseifi et al. 2006; Hernandez et al. 2014, 2016; Yoo et al. 2006). Additionally, 
the 3D FE model offers the flexibility to include damage models to compute distresses. The 3D FE 
model developed by Al-Qadi et al. (2021), was used as the baseline model of in this study. Hence, the 
details of the geometric mesh optimization was already completed. Details of the model inputs and 
considerations are discussed in the following section. 

MODEL OVERVIEW 

Implicit Dynamic Analysis 

Tire loading may be applied to pavements in several ways, including (i) static, (ii) quasi-static, and (iii) 
dynamic transient analysis. While static loading assumes time independence, the quasi-static 
approach incorporates a slowly moving load, wherein each timestep is assumed to represent one 
loading position. To the contrary, dynamic effects, such as inertia and damping, account for material 
time-dependent properties. For a dynamic analysis, energy-dissipation mechanisms dictate that a 
damping factor, friction factor, or viscoelastic material behavior needs to be implemented. In this 
study, the AC layers were modeled using linear viscoelasticity, which inherently accounted for 
damping and thus did not necessitate separate damping or friction factors. This modeling approach 
effectively captured the viscoelastic behavior of AC materials, making it a suitable choice for 
representing the AC layers’ response to dynamic loading. To the contrary, Rayleigh damping was used 
for the granular and subgrade materials (unbounded layers), where the mass proportional damping 
and stiffness proportional damping are assumed to be 3.1416 and 7.95×10-4, respectively (Wang and 
Al-Qadi 2011). 

Material Characterization 

Asphalt Concrete 

AC layers were characterized as linear viscoelastic material and Burger’s model (detailed in the 
previous chapter). The dynamic modulus (E*) is a fundamental mechanistic property that defines the 
linear viscoelastic behavior of AC as a function of temperature and loading time. To construct the 
dynamic modulus master curves, test results were shifted relative to a reference temperature, using 
the Williams–Landel–Ferry (WLF) time–temperature superposition principle. Williams et al. (1955) 
proposed an empirical equation to correlate the relaxation time of polymers at a temperature to 
their values at a reference temperature. The WLF equation could be written as presented in Figure 
63: 
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Figure 63. Equation. Time–temperature shift factor. 

where 𝑎𝑇 is AC time–temperature shift factor, 𝑇 is temperature of interest, 𝑇𝑔 is reference 

temperature, and 𝐶1, 𝐶2 are fitting parameters. 

Moreover, the dynamic modulus master curve could be obtained by fitting the experimental data to a 
Prony series. The Prony series is a mathematical representation of the viscoelastic behavior derived 
from the generalized Maxwell model, where the mechanical behavior of a material is represented 
through a combination of elastic (springs) and viscous (dashpots) elements (Soussou et al. 1970). Its 
general expression for the relaxation modulus could be written as follows: 

 

Figure 64. Equation. Prony Series for a generalized Maxwell model. 

where 𝐺0 is long-term modulus, 𝐺𝑖 is modulus of the i-th Maxwell term, 𝜏𝑖 is relaxation time of the i-
th Maxwell term, and 𝑛 is number of Maxwell term. Finally, the obtained Prony series was normalized 
to the instantaneous modulus to obtain a dimensionless expression for the relaxation modulus. This 
input is required for linear viscoelastic characterization in the commercial FE software ABAQUS. The 
normalized Prony series (Figure 65) could be written as follows: 

 

Figure 65. Equation. Normalized Prony Series. 

where 𝑔𝑖  is normalized modulus of the ith Maxwell term, and 𝑔𝑖 =
𝐺𝑖

𝐺0
⁄ . 

Granular and Subgrade Materials 

The stress dependency of granular layers is greatly influenced by the loading condition and AC-layer 
thickness—inherently, the stress applied on the granular material. Research by Wang and Al-Qadi 
2013 underscored the importance of considering the nonlinearity of unbounded layers, particularly as 
loading and/or temperature conditions become more severe, and as loading speed decreases. The 
equations for the vertical, horizontal, and shear moduli could be written as follow, respectively, in 
Figure 66. 

 

A. Vertical-resilient moduli 

𝑙𝑜𝑔(𝑎𝑇) =  −
𝐶1(𝑇 − 𝑇𝑔)

𝐶2 + (𝑇 − 𝑇𝑔)
 

𝐺(𝑡) = 𝐺0 − 𝐺𝑖 1 − 𝑒−𝑡/𝜏𝑖 
𝑛

𝑖=1
 

𝑔𝑅(𝑡) = 1 − 𝑔𝑖 1 − 𝑒−𝑡/𝜏𝑖 
𝑛

𝑖=1
 

𝑀𝑟
𝑣 = 𝑘1𝑝𝑎  

𝜃

𝑝𝑎
 
𝑘2

 
𝜏𝑜𝑐𝑡
𝑝𝑎

+ 1 
𝑘3
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B. Horizontal-resilient moduli 

 

C. Shear-resilient moduli 

Figure 66. Equations. Resilient moduli of granular materials. 

where 𝑀𝑟
𝑣 is resilient modulus in vertical direction; 𝑀𝑟

ℎ is resilient modulus in horizontal direction;  𝐺𝑟  
is resilient modulus in shear direction; 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6, 𝑘7, 𝑘8, 𝑘9 are regression coefficients, 
𝜃 = 𝜎1 + 𝜎2 + 𝜎3 = bulk stress expressed as the sum of principal stresses, 𝑝𝑎 is unit reference 

pressure (atmospheric pressure), and 𝜏𝑜𝑐𝑡 = 
1

3
√(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎1 − 𝜎3)2 = octahedral 

shear stress. For isotropic characterization, the vertical, horizontal, and shear-resilient moduli are 
estimated based on the same 𝑘-values so that 𝑀𝑟

𝑣 = 𝑀𝑟
ℎ = 𝐺𝑟.  

Layer Interaction 

The Coulomb friction model provided a simplified way to represent the interaction between two 
surfaces in contact. The frictional force is assumed area-independent, velocity-independent, and 
linearly related to the normal force. Moreover, it was assumed that the surfaces in contact were 
characterized to be homogeneous and isotropic materials, so that frictional properties remain 
constant across the surfaces. This model delineated two frictional states: static (where there is no 
relative motion) and kinetic (characterized by sliding behavior). Sliding would be initiated once the 
shear force has exceeded the shear limit, established by the product of the coefficient of friction and 
the normal force. However, the frictional force did not increase beyond the shear-stress limit. Based 
on this assumption, the Coulomb friction model was implemented on all interfaces with granular and 
unbound layers, using the following expression in Figure 67.  

 

Figure 67. Equation. Coulomb friction model. 

Where 𝜏𝑐𝑟𝑖𝑡 is maximum shear stress prior to relative sliding of layers, 𝜇 is friction coefficient, and 𝜎 is 
normal stress at the interface. 

In contrast, the elastic-stick model was implanted for the interaction between AC layers. In past 
research, the shear-stress distribution was found to be influenced by temperature and loading rate.  
Romanoschi and Metcalf (2001) conducted direct-shear testing and determined the values of 𝜏𝑚𝑎𝑥 = 
205.2 psi and 𝑑𝑚𝑎𝑥 = 0.062 in for AC interfaces, which were utilized in this study. 
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Temperature Profile Along the AC Layer 

AC behavior not only depends on loading rate but also on temperature. At low temperatures, the AC 
modulus increases, whereas it decreases as the temperature rises, leading to substantial differences 
in the stress/strain fields. In this study, a temperature profile was assumed along the AC depth. For a 
two-layer system, consisting of an AC layer and a granular base, a temperature profile was derived 
based on the solution proposed by Wang et al. (2009). In this model, an initial temperature was 
defined on the AC surface as the reference temperature; and then a temperature distribution was 
estimated as a function of the AC-layer thickness, initial temperature, thermal conductivity, and 
diffusivity of the AC and granular material, alongside discrete pavement depths. In addition, it was 
assumed that the thermal conductivity of AC and the granular material were 𝛼𝑎𝑐 = 0.0226 and 𝛼𝑔 =

0.0323 ft2/h, whereas the thermal diffusivity was assumed to be 𝜆𝑎𝑐 = 1.67 and 𝜆𝑔 = 1.21 BTU/h ft 

°F. The assumed maximum, minimum, and initial temperatures are summarized in Table 2. 

Table 2. Parameters for Temperature Distribution 

Condition Tmax Tmin c 

T1 54.00 45.00 31.00 

T2 40.00 30.00 25.00 

T3 28.06 20.00 20.00 

T4 20.00 8.94 15.61 

Load-Pass Approach 

In past research efforts (Ramakrishnan et al. 2021), only a single axle was typically simulated, as 
influence from multiple truck axles on the single-point critical responses was deemed minimal 
(Ramakrishnan et al. 2021). Conventionally, simulating the moving load requires the presence of all 
tire load imprints at the beginning of the simulation, which is moved across the wheel path length. 
However, as one can imagine, the computational time exponentially increases when considering 
multiple axles (i.e., tandem, tridem, or full truck), compounded in the lateral direction if extended for 
a full axle. Additionally, capturing the permanent-deformation progression of the material requires 
repetitive loading on the pavement model. In fact, in this project, following the conventional scheme 
led to infeasible run time—mainly due to the extensive discretization along the longitudinal and 
transverse directions. To remediate this issue and the inability of the current model to model cyclic 
loading, the load-pass approach (LPA) was established. It enables the use of a smaller geometric 
domain under multi-axle or cyclic loading, while maintaining model accuracy. 

Figure 68 presents the conventional approach of traversing three FE per load step. A previous study 
details that the identification of three elements per load was appropriate (Al-Qadi et al. 2021). At the 
initial time step, Tire 0, the full imprint is simulated for the conventional moving-load approach, 
followed by the beginning of the first moving-load step, Tire 1, wherein three moving-load transition 
elements are introduced. This procedure is typically followed until the last moving-load step, Tire n. 
The end of the simulation includes the full-load imprint, in line with the start of the simulation. This 
approach does not feasibly allow multi-axle or cyclic loading without requiring an extensively large 
geometrical FE domain. 
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Figure 68. Illustration. Detailed element loading of the conventional moving load. 

Instead of the conventional moving approach, the LPA was developed to incrementally introduce the 
load imprint via a partial entrance scheme. At the beginning of the LPA time step, only the three 
elements at the front leading edge of the wheel path were initiated for the partial entrance, following 
the three-element-per-step moving scheme (Figure 69). Depending on the contact length of the tire 
imprint, the moving scheme continued until the full-load imprint manifested or was present in the 
wheel path length.  

 

Figure 69. Illustration. Detailed element loading of the load-pass approach entrance. 

As the front edge of the load imprint reached the end of the wheel, a partial exit scheme was 
implemented, similarly to the partial entrance scheme. In this stage of the load application, the load 
imprint exited the model three elements per load step, as illustrated in Figure 70. The LPA aimed to 
emulate a “viewing window” effect, reminiscent of observing truck axles’ passing by from left to right. 
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Figure 70. Illustration. Detailed element loading of the load-pass approach exit. 

Another key component in the proposed LPA is proper implementation of the rest period. In the 
conventional moving-load approach, a relatively long wheel path would have been required to 
account for the rest period under one cycle of loading (recall that the conventional approach cannot 
impose loading cycles). Considering the transient loading nature at the beginning and end of the 
wheel path, due to the partial entrance and exit schemes, respectively, the assumed start location of 
the rest period was at mid-length of the model (with steady-state loading). Given an assumed 
traveling speed, the required distance for a specific rest period was calculated. However, as the LPA’s 
motivation was to narrow the wheel path length, there would be a residual distance to complete the 
full duration of the rest period. As the rest period entails the unloaded state, the residual time to 
complete the full rest-period duration was implemented through “unloaded” load steps in ABAQUS. A 
time-step increment was selected to be 0.05 sec to discretize the residual time. Immediately after the 
full rest period was completed, the next partial-entrance scheme would begin and be followed by the 
steps described above until the desired number of cycles was reached. An illustrative example of the 
rest-period implementation is presented in Figure 71, where 𝑋 is the assumed wheel path length. 

 

Figure 71. Illustration. Rest-period assumption from one cycle to another. 
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Figure 72. Illustration. Sensitivity analysis of LPA wheel path length. 

Given the motivation to narrow the wheel path length to reduce computational time, several wheel 
path lengths were evaluated to determine the appropriate wheel path length for the proposed LPA. 
Figure 72 illustrates the five tested scenarios, with increasing wheel path length from 680 to 1,160 
mm. It can be observed that the shortest wheel path length of 680 mm led to a boundary-reflection 
issue, given that the outer contours that surrounded the load imprint no longer radiated with a 
circular shape; instead, they assumed the shape of the model geometry. In contrast, the longest 
wheel path of 1,160 mm did not result in boundary issues.  

Moreover, the total compressive strain throughout the five-cycle application was compared for all 
the wheel path length scenarios. As illustrated in Figure 73, the extracted max responses did not vary 
significantly after five loading cycles for the sensitivity analysis of the wheel path length, given that 
the strains were extracted within the wheel path. However, as the GNN relies on the surrounding 3D 
domain as input data, the selected wheel path length was 920 mm to abate boundary-impact issues. 
This selection allowed eight loading steps to move the full imprint prior to reaching the wheel path 
length limit, then exiting soon after. 

 

Figure 73. Graph. Total compressive strain, E22, results from varying LPA wheel path lengths. 

Furthermore, three cases were compared: elastic, viscoelastic, and the Burger’s model to evaluate 
the impact of characterizing the AC layers with Burger’s model. As illustrated in Figure 74, the vertical 
compressive strain was highest for the Burger’s model, followed by the one from assuming 
viscoelasticity. In addition, only the Burger’s model resulted in an accumulation, as evidenced by the 
total compressive strain (which included the plastic strain), while the elastic and viscoelastic cases 
rebounded to nearly zero, as neither material characterization could capture the rutting behavior. 
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Figure 74. Graph. Comparison of elastic, viscoelastic, and Burger’s model assumptions for the AC 
layer.  

The corresponding total vertical compressive strain and stress outputs are presented in Figure 73. 
The accumulation presented in the total vertical compressive strain, comprised of elastic, viscoelastic, 
and plastic strains, was driven by the implementation of the Burger’s model. In contrast, the loading 
pulses, as would be expected, returned to zero after unloading. It was also evident that each loading 
cycle increased the rut depth, as expected. Hence, the combined implementation of the load-pass 
approach and the Burger’s model for AC-material characterization enabled quantifying rut-depth 
accumulation under a number of loading cycles. 

 

Figure 75. Graph. Total vertical compressive strain (E22), vertical compressive plastic strain (EP22), 
and vertical compressive stress (S22) outputs after five cycles, using Burger’s model assumptions 

for the AC layer.  

NUMERICAL MATRIX 

A total of 36 simulations for the single-axle cases was completed, as detailed in Table 3. The 
parametric analysis constrained the cyclic loading to the same-single axle, DTA with 34 kips, under 
uniform rest periods to identify the baseline pavement behavior when the Burger’s model was 
applied. Appropriate speeds were assumed for the thick and thin pavements, representative of 
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interstate and low-volume roadways, respectively (Figure 76). Two rest periods for unloading were 
assumed, following the laboratory testing matrix for rutting. In addition, reference linear viscoelastic 
cases were simulated for relative comparisons of the pavement responses. The researchers 
acknowledge that in reality a nonuniform rest period would be more suitable to emulate a full truck, 
given the varying axle distances. However, in this study, the same rest period was maintained 
between each loading cycle. 

 

Figure 76. Illustration. Thin and thick sections. 

Table 3. Pavement FE Simulation Parameters 

Structure 
Thick (11-in. AC) (only one 

section) 
Thin (4-in. AC) (strong and 

weak) 

Speed 70 and 40 mph 40 and 10 mph 

Tire Type DTA (34 kips) 

Rest Period 0.57 and 2.50 sec 

Temperature 
130°F (82°F for thin, weak section), 104°F, and 68°F (reference LVE) 

profiles 

Total Number of Cases 1 × 2 × 1 × 2 × 3 = 12 cases 2 × 2 × 1 × 2 × 3 = 24 cases 

 

The WLF and Prony series coefficients for the AC layers are presented in Table 4 and  

Table 5, respectively. 

Table 4. Williams–Landel–Ferry Coefficients of Asphalt Mixtures 

Component 

Thin 
PG64-28 SBS 

(Weak) 

Thin 
PG76-22 SBS 

(Strong) 

Thick 
PG 76-22 SBS 

Wearing 
Surface 

Thick 
PG 76-22 TR+ 
Intermediate 

Layer 

Thick 
PG 64-28 SBS 
Binder Layer 

𝐶1 39.498 61.810 61.810 23.169 39.498 

𝐶2 335.307 506.514 506.514 180.329 335.307 

Reference Temperature (°F) = 70 
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Table 5. Prony Series Coefficients of Asphalt Mixtures 

Thin 
PG64-28 SBS 

(Weak) 

Thin 
PG76-22 SBS 

(Strong) 

Thick 
PG 76-22 SBS 

(Wearing Surface) 

Thick 
PG 76-22 TR+ 
(Intermediate 

Layer) 

Thick 
PG 64-28 SBS 
(Binder Layer) 

i  ,i ig k  i  ,i ig k  i  ,i ig k  i  ,i ig k  i  ,i ig k  

1.00E-05 0.0433907 1.00E-05 0.0820033 1.00E-05 0.0820033 1.00E-05 0.153288 1.00E-05 0.043391 

0.0001 0.262994 1.00E-04 0.208093 1.00E-04 0.208093 1.00E-04 0.179055 0.0001 0.262994 

0.001 0.169979 0.001 0.154912 0.001 0.154912 0.001 0.134329 0.001 0.169979 

0.01 0.249581 0.01 0.237054 0.01 0.237054 0.01 0.198675 0.01 0.249581 

0.1 0.136212 0.1 0.132357 0.1 0.132357 0.1 0.141561 0.1 0.136212 

1 0.091877 1 0.121209 1 0.121209 1 0.108029 1 0.091878 

10 0.0176686 10 0.0171039 10 0.0171039 10 0.03617 10 0.017669 

100 0.0167445 100 0.0329051 100 0.0329051 100 0.033227 100 0.016745 

1000 0.0027767 1000 1.24E-12 1000 1.24E-12 1000 0.002464 1000 0.002777 

10000 0.0022501 10000 0.0070173 10000 
0.0070173

1 
10000 0.00604 10000 0.00225 

100000 0.0005953 100000 4.54E-14 100000 4.54E-14 100000 9.43E-11 100000 0.000595 

It is worth noting that the granular base for the thin-pavement section was assumed to be stress-
dependent, while the subgrade and the supporting layers of the thick-pavement section were 
assumed to be elastic materials, given that the influence of stress-dependency reduced with 
pavement depth. 

RESULTS AND FINDINGS 

The results of all thin- and thick-pavement simulations are presented in this section. For cases that 
implemented a 68℉-temperature profile, the AC-material characterization was assumed to be linear 

viscoelastic; the cases under high temperature profiles (104 and 130 ℉) considered the Burger’s 
model to quantify permanent deformation. 

Tensile Strains 

In general, tensile strains at the top and the bottom of the AC associates with the near-surface and 
bottom-up fatigue cracking, respectively. The critical/maximum tensile strains at the top and bottom 
of the AC layer for thick and thin cases are presented in Table 6 and Table 7, respectively, under 
varying materials (for thin section only), speeds, rest periods, and temperatures. 𝜖11 (𝐸11) 
corresponds to longitudinal strain, and 𝜖33 (𝐸33) corresponds to transverse strain. 
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Table 6. Critical Tensile Strain for Thick (TK) Pavement–Section Cases 

Speed 
(mph) 

Rest Period 
(sec) 

Temperature (

℉) 
E11_top_AC 

(𝝁𝝐) 
E33_top_AC 

(𝝁𝝐) 
E11_bot_AC 

(𝝁𝝐) 
E33_bot_AC 

(𝝁𝝐) 

40 

0.57 (RP2) 

68 0.41 2.81 39.67 32.55 

104 29.84 59.41 213.90 180.76 

130 100.05 107.45 333.29 275.32 

2.50 (RP3) 

68 0.41 2.62 39.14 31.69 

104 42.67 78.40 245.47 209.50 

130 125.04 147.76 325.19 340.71 

70 

0.57 (RP2) 

68 0.67 4.02 38.63 32.47 

104 35.09 46.96 199.53 168.18 

130 89.31 71.97 300.14 238.13 

2.50 (RP3) 

68 0.67 3.85 38.41 31.89 

104 41.64 59.63 223.13 180.03 

130 100.47 86.68 290.96 253.92 

Table 7. Critical Tensile Strains for Thin (TN) Pavement–Section Cases 

Material 
Speed 
(mph) 

Rest Period 
(sec) 

Temperature 

(℉) 

E11_top_AC 
(𝝁𝝐) 

E33_top_AC 
(𝝁𝝐) 

E11_bot_AC 
(𝝁𝝐) 

E33_bot_AC 
(𝝁𝝐) 

Strong 

10 

0.57 (RP2) 

68 0.83 25.87 129.63 105.68 

104 234.60 283.32 631.13 752.49 

130 272.37 521.51 1172.64 1460.95 

2.50  
(RP3) 

68 0.83 22.88 126.41 99.35 

104 255.91 475.71 793.67 912.66 

130 274.41 524.09 1219.72 1523.08 

40 

0.57 (RP2) 

68 3.48 16.55 106.38 82.61 

104 212.78 212.60 496.06 578.24 

130 370.11 494.47 1131.50 1223.08 

2.50 (RP3) 

68 3.48 15.61 104.81 80.88 

104 222.35 292.90 553.28 651.64 

130 364.45 479.02 1087.15 1210.31 

Weak 

10 

0.57 (RP2) 

68 1.21 34.38 146.79 123.32 

82 169.06 205.31 450.96 541.91 

104 246.32 354.19 828.13 885.05 

2.50 (RP3) 

68 1.21 29.72 142.30 114.16 

82 227.93 436.44 643.38 793.45 

104 264.57 601.89 967.78 1021.98 

40 

0.57 (RP2) 

68 4.53 21.17 119.60 93.54 

82 198.77 211.02 503.51 529.34 

104 225.44 224.78 562.50 626.60 

2.50 (RP3) 

68 4.53 19.77 116.79 91.02 

82 160.82 239.35 461.56 545.48 

104 231.58 367.48 614.95 696.12 
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In Table 6 and Table 7, the tensile-strain magnitudes followed expected trends and were consistent 
with respect to the inputs of the model such as temperature, speed, rest period, and material 
property (Figure 77). As temperature increased, the responses increased in magnitude because the 
AC became softer. Similarly, as the speed increased, the responses decreased as loading frequency 
increased, resulting in a stiffer AC. In contrast, the longitudinal tensile-strain magnitude could be 
either higher or lower, as compared to the transverse tensile (Al-Qadi et al. 2004; Garcia and 
Thompson 2008). However, the recovery time of the transverse tensile was always shown to be 
higher than that of the longitudinal strain, especially under higher temperatures wherein the viscous 
component induced a higher lag. Longitudinal strains recovered faster due to the movement of the 
load. As the load approached or left an element in the pavement model, the element was under 
compression in the longitudinal direction that resulted in a faster recovery. The element was in 
tension only when the load was exactly/nearly above the element. However, the element was 
constantly stretched in the transverse direction, which led to a slower recovery.  

 

Figure 77. Graph. Maximum tensile strains for all the thick cases. 

In addition, the tensile strains, extracted at the AC bottom, were plotted as a function of time for the 
thick section in Figure 78. At 68℉, 𝜖11 were consistently higher than 𝜖33 for all the load cycles, while 
the recovery is similar (Figure 78a). Under high temperature, the magnitude of transverse strains 
were smaller than that of the longitudinal strains for the first few cycles (Figure 78b and c).  

Due to slower recovery, transverse strains accumulated; and the magnitude eventually surpassed the 
longitudinal strain, thus making it critical for fatigue-cracking analysis. For the Burger’s model cases, 
the tensile strains will have permanent strain due to the Poisson’s effect; hence, it increased with 
each load cycle. The element was stretched and compressed in the transverse and vertical direction, 
respectively. Therefore, the longitudinal strain could be observed to reduce with the load application. 
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A. 68℉ (reference case, linear viscoelastic AC). 

 

B. 104℉ (Burger’s model AC). 

 

C. 130℉ (Burger’s model AC). 

Figure 78. Graph. Tensile strains per load cycle for the thick-pavement section at 40 mph with 0.57-
sec rest period. 
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Compressive and Permanent Strains 

In the literature, rutting is associated with compressive strains within the pavement structure. 
Usually, MEPDG transfer functions are used to compute rutting, based on the vertical compressive 
strains within the layers. For the Burger’s model cases, the permanent strain (𝜖22

𝑝 ) was directly 
obtained from the model for the AC layer; and for reference cases, only the viscoelastic compressive 
strain was calculated. In either case, elastic compressive strain was obtained for unbound materials, 
as they were only characterized as nonlinear, anisotropic stress-dependent, or linear elastic. The 
maximum compressive/permanent strain for the thick and thin cases are presented in Table 8 and 
Table 9, respectively. 

Table 8. Critical Permanent Strains for Thick-Section Cases 

Speed 
(mph) 

Rest Period 
(sec) 

Temperature  

(℉) 
E22_AC 

(𝝁𝝐) 
E22_Base 

(𝝁𝝐) 
E22_Subgrade 

(𝝁𝝐) 

40 

0.57 (RP2) 

68 31.95 19.14 65.84 

104 363.25 310.10 244.96 

130 879.73 828.85 275.75 

2.50 (RP3) 

68 31.24 18.78 64.99 

104 482.59 373.29 256.57 

130 949.56 942.51 273.54 

70 

0.57 (RP2) 

68 31.15 17.66 63.23 

104 265.62 242.87 245.05 

130 559.88 664.96 270.21 

2.50 (RP3) 

68 30.78 17.45 62.71 

104 333.44 277.27 254.56 

130 578.36 721.01 267.71 

Table 9. Critical Permanent Strains for the Thin-Section Cases 

Material 
Speed 
(mph) 

Rest Period 
(sec) 

Temperature 

(℉) 
E22_AC 

(𝝁𝝐) 
E22_Base 

(𝝁𝝐) 
E22_Subgrade 

(𝝁𝝐) 

Strong 

10 

0.57 (RP2) 

68 106.15 35.87 1417.90 

104 777.42 675.90 3736.36 

130 1564.64 1650.82 5082.51 

2.50  
(RP3) 

68 101.68 34.05 1355.58 

104 1296.32 760.73 4427.70 

130 2805.10 2065.66 5030.18 

40 

0.57 (RP2) 

68 84.66 26.74 1208.76 

104 365.55 362.33 3034.50 

130 621.60 1131.96 5664.02 

2.50 (RP3) 

68 83.09 26.28 1198.57 

104 553.71 381.15 3261.30 

130 774.13 1223.12 5498.32 
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Material 
Speed 
(mph) 

Rest Period 
(sec) 

Temperature 

(℉) 
E22_AC 

(𝝁𝝐) 
E22_Base 

(𝝁𝝐) 
E22_Subgrade 

(𝝁𝝐) 

Weak 

10 

0.57 (RP2) 

68 122.66 43.67 1560.27 

82 432.17 327.90 2755.91 

104 1161.24 923.34 4414.71 

2.50 (RP3) 

68 116.16 40.87 1480.83 

82 1075.77 446.94 3616.76 

104 2090.26 1154.08 5113.58 

40 

0.57 (RP2) 

68 95.66 31.35 1243.12 

82 206.08 386.32 3202.53 

104 463.16 459.64 3506.14 

2.50 (RP3) 

68 93.16 30.59 1271.14 

82 444.32 245.04 2776.30 

104 728.98 465.02 3737.13 

Similar to the tensile strains, the trends of the compressive and permanent strain responses were 
logical with respect to the inputs (Figure 79). Higher strains resulted under a longer rest period, 
aligned with the the experimental data. The viscoelastic compressive strain (𝜖22) for the reference 
cases (68℉) was not affected by the rest period, which demonstrated the inability of the linear 
viscoelastic material model to capture the effect of the rest period. The compressive/permanent 
strains for the thick section are plotted in Figure 80 as a function of time at the location of the 
maximum response.  

At 68℉, the magnitude of compressive strains did not change with load application; and the 
responses were nearly fully recovered within the rest period. When the AC temperatures increased to 

104 and 130℉, permanent deformation increased per load cycle but at a decreasing rate with load 
application. Also, the permanent strain did not increase during the rest period due to the absence of 
load (Figure 75). Similar trends were observed for other cases in the matrix. 
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Figure 79. Plot. Maximum vertical strains in AC for all the thick cases. 

 

A. 68℉ (reference case, linear viscoelastic AC). 
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B. 104℉ (Burger’s model AC). 

 

C. 130℉ (Burger’s model AC). 

Figure 80. Plots. Compressive/permanent strains per load cycle for the thick-pavement section at 
40 mph with 0.57-sec rest period. 

AC Rutting 

Rutting can be approximated by multiplying the permanent strain with the thickness of the sublayer 
(in line the MEPDG approach) or, in this case, per a finite element. The rut across the AC depth during 
the last cycle for a thick section is illustrated in Figure 81 via contour plots for varying rest periods, 
speeds, and temperatures. For brevity, the contour images for other sections are not presented, as 
they exhibited similar trends. The pattern was mainly dependent on the pavement configuration (thin 
versus thick) for a given loading and pavement temperature (Figure 82). As would be expected, 
rutting was found to be relatively high within regions directly underneath the loading (encased by the 
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two vertical dashed lines), as compared to the neighboring regions. The results were similar to rutting 
observed in the roadways, where severe rut is observed underneath traffic wheel path.  

 

A. Thick section under 40 mph, 0.57-sec rest period, and 104℉. 

 

B. Thick section under 40 mph, 0.57-sec rest period, and 130℉. 
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C. Thick section under 70 mph, 0.57-sec rest period, and 130℉. 

 

D. Thick section under 70 mph, 2.50-sec rest period, and 104℉. 

Figure 81. Graph. Rut contour across the cross section of AC layer (1 mm = 0.039 in.). 
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Figure 82. Plots. Rut contour for the thin-pavement section under 40 mph, 0.57-sec rest period, and 
104℉. 

SUMMARY 

The pavement FE model, developed by Al-Qadi and colleagues over the past three decades, has the 
capability to emulate realistic loaded-pavement conditions, tire-loading complexity, accurate material 
property, temperature profile, and layer interaction. However, the conventional model has mainly 
focused on a single-tire-load pass, which typically required a wheel path length that appropriately 
captures the history of a full moving load. Moreover, the assumed tire-contact stresses have been 
loaded in steady state.  

To implement cyclic loading, the load-pass approach (LPA) was developed. It accounted for a 
transient moving load as the load entered and exited the analysis domain—emulating having a 
viewing window as a truck-tire load would pass. Motivated by reducing the 3D domain and the 
corresponding computational cost, the proposed LPA included partial entrance and exit schemes that 
applied transient loading. Additionally, an appropriate wheel path length was selected to allow 
moving the full-load imprint for a given length, prior to the exit scheme. Considering the reduced 
wheel path length (in contrast to the conventional moving-load approach), the required distance 
associated with the full duration of the rest period became much longer. Instead, the numerical 
implementation included time/distance after the load has “unloaded” the area of interest to simulate 
the rest period. A residual time from the total rest period was then managed by including load steps 
with no tire loading (allowing the AC layer(s) to recover). After the total rest period was completed, 
the next axle load was immediately introduced via partial entrance, moving the full tire load after 
manifesting, and then partial exit. The same load/unload cycle was continued until the selected 
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number of load cycles was reached. By adopting the LPA, the FE pavement model’s ability to simulate 
full-axle tandem/tridem configurations was enhanced, enabling reasonable runtime without 
compromising model accuracy. Accuracy was verified by comparing responses with the conventional 
moving load for one cycle, along with the sensitivity analysis of wheel path length and comparison 
with AC material consideration. 

The Burger’s model, validated in Chapter 2, was implemented in place of a linear viscoelastic model 
for the AC to obtain permanent deformation. A set of 24 cases was run using a combined LPA and 
Burger’s model. An additional 12 cases, using the conventional linear viscoelastic model, were 
appended. Critical strains in the pavement model were obtained, and the values were logical and 
consistent with the inputs. The transverse tensile strain was found to be more critical than the 
longitudinal tensile strain, due to the accumulation of responses. The combined model (using 
Burger’s and LPA) demonstrated the ability to capture accumulated rutting in AC layers. The rut 
distribution across the AC layer depends mainly on pavement configuration and temperature. The 
magnitude of rut depth was greater when the rest period is higher, reflecting the experimental data. 
During the rest period, compressive strain stabilizes to permanent deformation after recovering 
elastic and viscoelastic strains. The progression of deformation was found to be similar to that of 
conventional pavement-rut progression.  
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CHAPTER 4: GRAPH NEURAL NETWORK 

INTRODUCTION 

On average, the pavement FE model simulation using the LPA and Burger’s model is completed within 
50 hr via a supercomputer with 40 cores. In lieu of running the FE model for an extensive factorial of 
parameters, the simulation matrix was strategically selected as training/testing data for a machine 
learning (ML) model—used in tandem with FE simulations. ML, with its nonlinear, highly parallel, and 
fault-tolerant learning and generalization capabilities, has been a promising and widely applied 
solution in engineering. The requirements of ML are twofold: a good dataset to train and test, and an 
appropriate model for the needs of the problem. In the past decade, over 900 FE pavement models 
comprising different pavement configurations, speed, temperature, tire type, and load were 
simulated, postprocessed, and analyzed by the Illinois Center for Transporation (ICT). This database 
serves as a robust dataset to train the ML model. Different ML models such as nonlinear regression, 
multi-layer perceptron (MLP), and Bayesian neural network were trained and implemented to predict 
maximum-point responses (stresses, strains, and deflections) for a loaded-pavement problem. 
However, those models were unable to recognize the spatiotemporal complexity of the actual 3D 
pavement model.  

Recently, graph neural network (GNN) has been proposed to predict time-series data while 
considering spatiotemporal interactions. GNN has been shown to achieve satisfactory performance in 
spatiotemporal modeling and prediction. For example, Sanchez-Gonzalez et al. (2020) developed a 
GNN-based framework to model the state of a physical system, using particles as nodes in a graph 
and calculate dynamics (displacement, velocity, and acceleration), while including thousands of 
particles and time steps. Similarly, Pfaff et al. (2021) proposed a GNN-based framework to learn 
mesh-based simulations, including aerodynamics, structural mechanics, and cloth, as their proposed 
GNN models could learn to pass messages on a mesh graph and adjust the mesh discretization during 
forward simulation. In addition, Li et al. (2019, 2020) developed a deep-graph convolutional network 
(GCN), namely DeepGCN, by borrowing concepts from the convolutional neural network (CNN) for 
the large-scale graph-learning tasks of node-property prediction (e.g., predicting the presence of 
protein functions) and graph-property prediction (e.g., predicting the target molecular properties). 
Besides, Li and Zhu (Li and Zhu 2021) proposed a spatiotemporal fusion graph neural network 
(STFGNN) for spatiotemporal data forecasting of traffic flow, while taking into account various spatial 
and temporal graphs. The aforementioned examples illustrate that GNN could be used as an accurate 
and robust alternative for pavement-response modeling. 

METHODOLOGY 

Graph 

For GNN, a graph shows relationships between several representations, defined as a 3-tuple 𝐺 =
(𝐮, 𝑉, 𝐸) (Battaglia et al. 2018; Sanchez-Lengeling et al. 2021). The 𝐮 is a global feature. The 𝑉 =
{𝐯𝑖}𝑖=1:𝑁𝑣 is the sets of node (or vertexes) features where there is a total of 𝑁𝑣  nodes, and each 𝐯𝑖 is 
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a node’s feature. The 𝐸 = {(𝐞𝑘 , 𝑟𝑘 , 𝑠𝑘)}𝑘=1:𝑁𝑒 is set of edge features, where there is a total of 𝑁𝑒  
edges, each 𝐞𝑘  is an edge’s feature, 𝑟𝑘 is index of receiver nodes, and 𝑠𝑘  is index of sending nodes. 

Before training and evaluating GNN models, the 3D pavement FE data were reconstructed into a 
graph. The nodes of 3D pavement FE models were constructed as the nodes of a graph. The node 
connections of 3D pavement FE models would be constructed as the edges of a graph. 
Correspondingly, the 3D pavement FE data would be considered as the node and edge features, 
which are summarized in Table 10. 

Input node features 

i. X, Y, and Z coordinates (3 features): The X, Y, and Z coordinates of nodes, namely nodes of 3D 
pavement FE models.  

ii. Pavement-layer type (1 feature): The layer type of pavement structure, namely, AC layer (0), 
base layer (1), subbase layer (2), and subgrade layer (3). All AC sublayers would be 
represented as the AC layer for the layer type.  

iii. Temperature (1 feature): The temperature of 3D pavement FE models.  
iv. Material (11 features): The material property of 3D pavement FE models. It includes AC 

instantaneous modulus, AC sigmoidal function parameters (𝛼, 𝛽, 𝛾, and 𝛾), base modulus, 
base-material type (0 is linear and 1 is stress-dependent), subbase modulus, subbase material 
type (0 is linear and 1 is stress-dependent), subgrade modulus, and subgrade material type (0 
is linear and 1 is stress-dependent).  

v. Loading profiles (3 features): The 3D contact-stress force of 3D pavement FE models and is 
applied only to the model surface.  

vi. Loading time (1 feature): The accumulated loading time. 
vii. Previous pavement responses (displacement, stress, strain) (15 features): The pavement 

responses (displacement, stress, strain) at one previous time step. They include the 
displacement 𝑈1, 𝑈2, 𝑈3; stress 𝑆11, 𝑆22, 𝑆33, 𝑆12, 𝑆13, 𝑆23; and strain 𝐸11, 𝐸22, 𝐸33, 𝐸12, 𝐸13, 
and 𝐸23. 

Input edge features 

i. Relative distance (1 feature). This is the relative distance of each edge, namely the FE edge of 
3D pavement FE models.  

ii. Relative pavement responses (displacement, stress, strain) (3 features). They are the relative 
pavement responses of two connected nodes of each edge. 𝐷𝑖𝑠𝑝𝑟𝑒𝑙 is the relative 
displacement, 𝑆𝑡𝑟𝑒𝑠𝑠𝑟𝑒𝑙  is the relative stress, and 𝑆𝑡𝑟𝑎𝑖𝑛𝑟𝑒𝑙 is the relative strain.  

Output node features 

i. Target pavement responses (displacement, stress, strain) (11 features). The pavement 
responses at the target time step or the next time step would be the final model output. 
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Table 10. Summary of Node and Edge Features 

Graph Features 

Input 
Node 

 X, Y, and Z coordinates (3 features) 
 Pavement-layer type (1 feature) 
 Temperature (1 feature) 
 Material (13 features) 
 Loading profiles (3 features) 
 Loading time (1 feature) 
 Previous pavement responses (displacement, stress, strain) (15 features) 

Edge 
 Relative distance (1 feature) 
 Relative pavement responses (displacement, stress, strain) (3 features) 

Output Node  Target pavement responses (displacement, stress, strain) (15 features) 

 

Graph Neural Network 

The GNN is a transformation that optimizes all attributes of a graph (nodes, edges, and global 
context) while maintaining graph symmetries (permutation invariances) (Sanchez-Lengeling et al. 
2021). GNNs utilize a “graph-in, graph-out” architecture, which means they take a graph as input—
complete with data embedded in its nodes, edges, and global context—and progressively refine these 
embeddings without altering the original graph’s connectivity (Sanchez-Lengeling et al. 2021). To 
model 3D pavement responses, a GNN-based pavement simulator (GPS) is proposed, as shown in 
Figure 83. It is based on the work by (Pfaff et al. 2021; Sanchez-Gonzalez et al. 2020). GPS includes 
three main components: encoder, processor, and decoder. 

The encoder embeds the 3D pavement FE model as a latent graph. The node embeddings are learned 
functions of the node features of 3D pavement FE model (Table 10). The edge embedding is learned 
functions of the edge features 3D pavement FE model (Table 10). In this work, the encoder employs 
the multilayer perceptrons (MLP) to encode node features and edge features into latent vectors with 
the size of 128. 

The processor calculates interactions among nodes and edges through a sequence of learned layers 
to produce a series of updated latent graphs. It would pass, aggregate, and update messages 
between nodes and their connected nodes and edges. It outputs the final graph, which would be 
used as the input of the decoder. It uses a graph network (GN) as the processor. GN consists of a 
sequence of GN layers. Each GN layer includes three separate “update” functions (ϕ) and three 
associated “aggregation” functions (ρ).  

Edge updates are performed using the ϕe function across all edges, and node updates utilize the ϕv 
function across all nodes. In contrast, the ϕu function provides a global update and is applied once. 
The ϕ function may be implemented as a neural network, such as an MLP. As for the ρ function, it 
processes sets of inputs, effectively consolidating them into a single output that reflects aggregated 
information. Importantly, these ρ functions are invariant to permutations of their inputs and can 
adapt to varying input sizes. Possible implementations of the ρ function include operations like 
elementwise summation, averaging, or taking the maximum. In this study, the global block was not 
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used, as there were no global features (Table 10). Ten GN layers were used, and each GN layer had 
both the input and output size of 128. The ϕe and ϕv functions were a two-layer MLP with an input 
and output size of 128. The ρe→v function was the elementwise summation. 

The decoder retrieves dynamic information (i.e., pavement responses in this study) from the nodes of 
the final latent graph. In this study, the decoder employed the multilayer perceptrons (MLP) to 
decode latent vectors with the size of 128 into the pavement responses of the 3D pavement FE 
model.  

 

Figure 83. Plot. The framework of graph neural network–based pavement simulator (GPS), 
including encoder, processor, and decoder. 

3D FEM PAVEMENT-DATABASE DEVELOPMENT 

Based on the FE model developed, this study built a pavement 3D FE model database. The data have 
36 FE cases, including 12 cases with thick pavements and 24 cases with thin pavements (Table 3). 
Table 11 summarizes the statistical metrics of the pavement responses of the 3D FE pavement 
database. These responses varied significantly in different ranges. The displacement and stress varied 
in a similar range, which was much larger than the strain. Among all strain values, E and EP also 
showed differences. In addition, FE model cases had different time steps because different speeds 
and rest periods were used in the FE models. As shown in Figure 69-Figure 71, the LPA approach has 6 
loading-entrance time steps, 9 full-loading time steps, and 6 loading-exit time steps, while there are 
varied time steps for the rest period. For consistency, each FE model case selected 10 time steps from 
the first loading cycle to build the database. It means each FE model case selected 9 full-loading time 
steps and 1 time step from the rest period (i.e., the last time step of the rest period). Therefore, this 
database had a total of 360 data points.  

The database was divided into three subsets to train and evaluate the GNN models: training (70%), 
validation (10%), and test sets (20%). The training set was used to develop the model, while the 
validation set helped select the optimal version during training. The final test set served to evaluate 
the model’s performance. Both thin- and thick-pavement cases were distributed proportionally 
across these subsets. The training set contained 26 FEM cases (17 thin pavement and 9 thick 
pavement) with 260 data points. The validation set included 3 FEM cases (2 thin pavement and 1 
thick pavement) with 30 data points. The test set comprised 7 FE model cases (5 thin pavement and 2 
thick pavement) with 70 data points. 
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To reduce the effect of different ranges of pavement responses on training GNN models, all 
pavement responses were normalized with their corresponding mean values and standard deviations. 

Table 11. Summary of the Pavement Responses of 3D FEM Pavement Database 

 Displacement (mm) Stress (MPa) Strain (με) 

 U1 U2 U3 S11 S22 S33 S12 S13 S23 E11 E22 E33 E12 E13 E23 

Min 0.701 -0.016 0.182 3.401 0.060 2.686 0.378 0.455 0.421 2314 697 1308 5001 3073 2989 

Max -0.454 -2.016 -0.208 -3.362 -0.858 -2.759 -0.418 -0.457 -0.426 -2562 -4531 -1579 -1885 -3071 -3035 

Mean -0.001 -0.512 -0.002 -0.002 -0.028 -0.002 -0.002 -2e-6 -7e-5 47 -350 39 120 1 -1 

Std 0.071 0.311 0.033 0.234 0.057 0.204 0.039 0.040 0.025 195 565 139 446 154 323 

Note: The subscripts “1”, “2”, and “3” refer to the longitudinal (X), vertical (Y), and transverse directions (Z), correspondingly. Max is the 
maximal value, Min is the minimal value, Mean is the mean value, and Std is the standard deviation value. 

RESULTS AND DISCUSSION 

Two case studies— OneStep and Rollout—were used to evaluate the performance of the proposed 
GPS model. In the OneStep case, the proposed GPS model used the ground-truth data as input. This 
means the input would include all node features and edge features from the ground-truth data, and 
the output would be the pavement responses of the target time step (i.e., the next time step). This is 
also the training procedure. In comparison, in the Rollout case study, the proposed GPS model would 
predict the pavement responses at the target time step based on its own predicted pavement 
responses at the previous time step, except for the first time step. As presented in Table 10, the input 
would use the predicted pavement responses at the previous time step as the previous pavement 
responses. The Rollout case is similar to the FE model simulation, which predicts the pavement 
responses of all time steps after given loading profiles. Because error could accumulate over time in 
the Rollout case, the prediction error in the Rollout case would be higher than in the One-Step case. 

As presented in Figure 84, the MSE of the GPS model for all pavement responses was greater in the 
Rollout case than in the OneStep case. The MSE of stress and strain was over 10 times higher in the 
Rollout case than in the OneStep case, while the MSE of displacement was over 6 times greater. This 
is because the GPS model would use its own predicted pavement responses as inputs across all time 
steps except for the first time step in the Rollout case, while the GPS model would use ground-truth 
pavement responses as inputs in the OneStep case.  

Compared to the OneStep case, the prediction error would accumulate as the time step increases, as 
presented in Figure 85. In the first few time steps, the GPS models had similar MSE in the OneStep 
and Rollout cases. However, as the time step increased, the MSE for the Rollout case significantly and 
rapidly increased; but it remained at a low value for the OneStep case. This resulted in the GPS model 
having a much higher MSE in the Rollout case study than in the OneStep case study. 
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Figure 84. Plots. MSE of GPS model: (a) the summary, (b) the MSE of the OneStep case study, and 
(c) the MSE of the Rollout case study. 

 

Figure 85. Plots. MSE of the GPS model across all time steps of FEM cases: (a) the summary, (b) 
displacement, (c) stress, and (d) strain. 

In addition to MSE, the pavement-response prediction was used to evaluate model performance. As 
presented in Figure 86, the GPS model demonstrated excellent prediction accuracy across all time 
steps in the OneStep case study, with results closely matching the ground-truth data (i.e., FE model 
results). Although predictions for the Rollout case study showed slightly lower accuracy, they 
remained satisfactory. The GPS model successfully captured trends across all pavement responses. 
For strains E11 and E33, prediction error increased during the loading period but decreased during 
the rest period (TimeStep 10). A similar pattern emerged in displacement U2. Strain E22 showed 
increasing prediction error over time before stabilizing below peak levels in the final time steps. 
Strain E23 predictions matched the reference data closely for the first seven time steps before 
showing significant deviation. Notably, stress S22 predictions maintained high accuracy throughout 
all periods. 

Pavement-response predictions were also presented through figures in different planes. Figure 87–
Figure 92 show pavement-response predictions in the YZ plane, including E11, E22, E33, E23, U2, and 
S22, respectively. The results reveal distinct performance patterns between the OneStep and Rollout 
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case studies. In the OneStep study, the GPS model achieved high accuracy with minimal prediction 
errors across all pavement responses. The Rollout study, however, showed variable performance 
across different response types. Strain predictions (E11, E22, E33, and E23) maintained high accuracy 
in both cases. However, stress (S22) and displacement (U2) predictions showed reduced accuracy in 
the Rollout case, while maintaining high precision in the OneStep case. Additional analysis of strain 
E22 in the XY and XZ planes (Figure 93 and Figure 94, respectively) revealed similar patterns. The 
model maintained accurate predictions in the XY plane for both cases but showed decreased accuracy 
in the XZ plane for the Rollout study, while maintaining precision in the OneStep case. 

 

Figure 86. Plots. Pavement-response predictions across all time steps: (a) E11, (b) E22, (c) E33, (d) 
E23, (e) S22, and (f) U2. The position was obtained based on the maximal absolute value E22 of the 

middle section of the wheel path. 
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Figure 87. Plots. Pavement-response (E11) prediction in the YZ plane for TimeStep 9: (a) for ground 
truth; (b) and (c) for model predictions and prediction errors in the OneStep case study, 

respectively; (d) and (e) for model predictions and prediction errors in the Rollout case study, 
respectively. 

 

Figure 88. Plots. Pavement-response (E22) prediction in the YZ plane for TimeStep 9: (a) for ground 
truth; (b) and (c) for model predictions and prediction errors in the OneStep case study, 

respectively; (d) and (e) for model predictions and prediction errors in the Rollout case study, 
respectively. 
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Figure 89. Plots. Pavement-response (E33) prediction in the YZ plane for TimeStep 9: (a) for ground 
truth; (b) and (c) for model predictions and prediction errors in the OneStep case study, 

respectively; (d) and (e) for model predictions and prediction errors in the Rollout case study, 
respectively. 

 

Figure 90. Plots. Pavement-response (E23) prediction in the YZ plane for TimeStep 9: (a) for ground 
truth; (b) and (c) for model predictions and prediction errors in the OneStep case study, 

respectively; (d) and (e) for model predictions and prediction errors in the Rollout case study, 
respectively. 
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Figure 91. Plots. Pavement-response (S22) prediction in the YZ plane for TimeStep 9: (a) for ground 
truth; (b) and (c) for model predictions and prediction errors in the OneStep case study, 

respectively; (d) and (e) for model predictions and prediction errors in the Rollout case study, 
respectively. 

 

Figure 92. Plots. Pavement-response (U2) prediction in the YZ plane for TimeStep 9: (a) for ground 
truth; (b) and (c) for model predictions and prediction errors in the OneStep case study, 

respectively; (d) and (e) for model predictions and prediction errors in the Rollout case study, 
respectively. 



 

59 

 

Figure 93. Plots. Pavement-response (E22) prediction in the XY plane for TimeStep 9: (a) for ground 
truth; (b) and (c) for model predictions and prediction errors in the OneStep case study, 

respectively; (d) and (e) for model predictions and prediction errors in the Rollout case study, 
respectively. 

 

Figure 94. Plots. Pavement-response (E22) prediction in the XZ plane for TimeStep 9: (a) for ground 
truth; (b) and (c) for model predictions and prediction errors in the OneStep case study, 

respectively; (d) and (e) for model predictions and prediction errors in the Rollout case study, 
respectively. 
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SUMMARY  

This chapter proposed a genetic neural network (GNN)–based framework for 3D asphalt concrete 
(AC) pavement-response modeling. Based on the 3D pavement finite element (FE) model developed 
in this study, the 3D FEM pavement database was built with 36 FE model-simulation cases, including 
different pavement structures, material properties, temperatures, speeds, and rest periods. The 3D 
pavement FE model data was reconstructed into a graph by constructing the nodes and node 
connections of 3D pavement FE models as the nodes and edges of a graph, respectively. To better 
represent 3D pavement FE model data, input node features included node coordinates, pavement 
layer type, temperature, material properties, 3D loading profiles, loading time, and previous 
pavement responses (displacement, stress, strain). The input edge features included relative distance 
and relative pavement responses. The output node features were target pavement responses. To 
model 3D pavement responses, a GNN-based pavement simulator (GPS) was developed, including 
three main components: encoder, processor, and decoder. The encoder and decoder employed the 
two-layer multilayer perceptrons (MLP), and the processor used the graph network (GN). In addition, 
two case studies were developed to evaluate the performances of the proposed GPS model in 
predicting 3D pavement responses, including OneStep and Rollout. These two case studies were used 
to represent different test conditions, with the Rollout case being similar to the FE model simulation. 
The results showed that the proposed GPS model achieved satisfying accuracy in both case studies, 
with higher errors in the Rollout case study than in the OneStep case study. Therefore, the proposed 
GPS model could be an accurate and computationally efficient alternative to predict 3D pavement 
responses. In the future, the proposed GPS model will be trained with the 3D FE model pavement 
dataset with more loading cycles. 
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

This study details the combined use of finite element (FE) simulations and genetic neural network 
(GNN) to capture and quantify asphalt concrete (AC) pavement permanent deformation. Particularly, 
a generalized nonlinear Burger’s model was proposed to simulate the permanent-deformation 
behavior of AC. The model utilizes a nonlinear power-law dashpot, which provides improved 
accuracy, as compared to the conventional dashpot with constant viscosity. The model is numerically 
formulated through an incremental approach to obtain the material response. The 1D formulation 
was extended to a 3D formulation. The model was then implemented in ABAQUS as a custom 
subroutine and verified through comparison with an analytical solution for creep loading using 
MATLAB. Model parameters were computed from the repeated-load permanent deformation and 
dynamic modulus tests. The model was successfully validated against experimental data and can 
predict permanent deformation up to the secondary region, demonstrating its effectiveness in 
simulating pavement rutting behavior. Moreover, a sensitivity analysis showed that the viscoelastic 
parameter ′𝑏′ in the Burger’s model had a more significant impact on permanent strain at lower 
temperatures; and the deformation-rate parameter ′𝑎′ became more influential at higher 
temperatures. Additionally, ′𝑎′ was found to be exponentially dependent on rest periods; and ′𝑏′ had 
a linear dependence on both rest periods and stress levels.  

In lieu of the conventional moving load, the study incorporated the new load-pass approach (LPA) to 
capture the transient effects of repetitive tire loading in a pavement FE model. One of the advantages 
of the LPA over the conventional moving-load method is the significant reduction in the required 
wheel path length in the longitudinal direction, directly leading to computational time savings—
without adversely affecting the resulting responses. The proposed LPA-enabled cyclic loading is to be 
combined with the Burger’s model constitutive relation in the AC layers to enable rut accumulation 
for a given number of passes. The approach also extends the capabilities of the research group’s FE 
model to handle repetitive load-induced damage. 

A GNN-based framework is proposed for 3D AC pavement-response modeling. The framework builds 
on a database of 36 FE model-simulation cases, which were transformed into a graph structure by 
converting the FE model’s nodes and connections into corresponding graph nodes and edges. Node 
features included node coordinates, pavement-layer type, temperature, material properties, 3D 
loading profiles, loading time, and previous pavement responses (displacement, stress, strain). Edge 
features utilized relative distance and relative pavement responses, while output features 
represented the target pavement responses. To model 3D pavement responses, the GNN-based 
pavement simulator (GPS) was proposed, including three main components: encoder, processor, and 
decoder. The GPS model employed two-layer multilayer perceptrons (MLP) for the encoder and 
decoder, while utilizing graph network (GN) for the processor. Validation of the framework occurred 
through two case studies—OneStep and Rollout—with the latter closely replicating FE model–
simulation conditions. Results demonstrated strong predictive accuracy across both scenarios, though 
the Rollout case exhibited higher errors, as compared to OneStep. These findings establish the GPS 
model as an accurate and computationally efficient alternative for predicting 3D pavement 
responses, given that an appropriate database is used.  
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PROJECT OUTPUTS, OUTCOMES, AND IMPACTS 

The outputs, outcomes, and impacts of this study are summarized as follows: 

OUTPUTS 

• Presentation: Al-Qadi, I. L., and Liu, F. (2024). AI-driven Smart Asphalt Concrete Pavements. 
2024 Data Science for Pavements Symposium, McLean, VA.  

• Poster: Al-Qadi, I. L., Ramakrishnan., A., Jayme, A., and Fangyu Liu. (2024). Combined 
Mechanistic and Physics-Informed Modeling to Predict Pavement Damage due to Truck 
Platoons. 2024 CCAT Global Symposium, Ann Arbor, MI. 2024 

OUTCOMES 

• A generalized nonlinear Burger model was proposed to simulate the permanent deformation 
behavior of AC, which was implemented in Abaqus as a UMAT and verified against the 
analytical solution (using MATLAB) for a simple creep loading scenario. 

• The “load pass approach” is introduced to impose cyclic loading on the FE pavement model. 

• A graph neural network-based framework was proposed to model the 3D pavement 
responses and the permanent deformation of flexible pavements. 

IMPACTS 

• Rutting is a critical distress in flexible pavement. It is predicted using transfer functions. 
Transfer functions are empirical; hence, resulting in high variability. The proposed framework 
includes a mechanistic model combined with an artificial intelligence model to compute 
rutting without using transfer functions resulting in higher accuracy. It will significantly save 
computational time for investigating pavement damage induced by truck platoons. It helps 
simulate repetitive loading and predict accumulating pavement responses, including rut depth 
prediction.  
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